مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

استخراج مدول یانگ بافت سرطانی معده به روش تجربی با استفاده از میکروسکوپ نیروی اتمی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی اراک، دانشگاه اراک، اراک، ایران
2 دانشجوی کارشناسی‌ارشد‌، گروه مهندسی ساخت‌وتولید، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
چکیده
شناسایی خواص سلول به‌منظور جداسازی بافت‌های سالم و آسیب‌دیده‌ی سلول‌های زیستی، جابه‌جایی و منیپولیشن سلول‌ها و میکرو/نانو ذرات مختلف، تصویربرداری و شناسایی شکل سلول‌ها و سطوح مختلف از کاربردهای جدید میکروسکوپ‌های نیروی اتمی می‌باشد که امروزه استفاده از میکروسکوپ‌های نیروی اتمی را گسترش داده است. در مدل‌سازی منیپولیشن میکرو/نانو ذرات، با استفاده از میکروسکوپ نیروی اتمی، یکی از نکات مهم استفاده از مدل تماسی مناسب و دقیق می‌باشد. ازآنجاکه در منیپولیشن سه‌بعدی، میکرو/نانوذره بین تیرک و صفحه‌ی مبنا قرار دارد، لذا تئوری‌های تماسی باید به دو بخش تقسیم شوند. بخش اول تماس بین صفحه‌ی مبنا و میکرو/نانوذره می‌باشد و بخش دیگر تماس بین میکرو/نانوذره و نوک سوزن تیرک می‌باشد. در این پژوهش به استخراج مدول یانگ بافت سرطانی معده با استفاده از میکروسکوپ نیروی اتمی به‌منظور شناسایی بافت پرداخته‌شده است. برای این منظور دو مدل تماسی هرتز و جی‌کاآر جهت استخراج مدول یانگ توسعه داده‌شده‌اند. در یک آزمایش تجربی پس از جداسازی سلول‌ها از بافت سرطانی معده با استفاده از تیرک مستطیلی شکل و سوزن‌های هرمی و کروی میکروسکوپ نیروی اتمی نمونه‌ها مورد آزمایش قرار گرفتند و نمودارهای نیرو-عمق نفوذ به‌دست‌آمده است سپس با استفاده از روش نصف کردن و نرم‌افزار متلب به تحلیل داده‌ها پرداخته شد. با توجه به نتایج به‌دست‌آمده از نمودار نیرو-عمق‌نفوذ می‌توان ضریب فنری ظاهری برای سلول مدلسازی کرد زیرا شیب این نمودار خطی است. حدود مدول یانگ بافت مورد نظر، با توجه به نمودارهای به‌دست‌آمده از مقایسه نتایج تجربی مستخرج از میکروسکوپ نیروی اتمی و نتایج تئوری تماسی هرتز و جی‌کاآر 25±325 KPa به‌دست‌آمده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Determination of the young modulus of gastric cancer tissue experimentally using atomic force microscopy

نویسندگان English

Moein Taheri 1
Seyed hasan Bathaee 2
1 Department of Mechanical Engineering, Arak University, Arak, Iran
2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

Diagnosis of cell properties to separate healthy and damaged tissues, imaging and determination of cells’ shape and different surfaces are new applications of atomic force microscopy, which have extended using of the atomic force microscopy these days. In the manipulation modeling of micro/nanoparticles, using an atomic force microscope, one of the important points, is using an appropriate and accurate contact model. Since in the 3D manipulation, micro/nanoparticle is located between the cantilever and the substrate, therefore contact theories should be divided into two parts. The first section is the contact between the substrate and micro/nanoparticle, and the other section is the contact between micro/nanoparticle and the tip of the cantilever. In this research elasticity module of the gastric cancer cells has been measured using atomic force microscopy to diagnose cancerous tissue. To do so, two Hertz and JKR contact models have been developed to extract the elasticity module. In an experimental, after isolating the cells from the gastric cancer tissue, the specimens were tested using a rectangular beam and pyramidal and spherical needles under an atomic force microscope, and the force-depth graphs were obtained. Data analysis was performed. According to obtained results, the considered cell’s elasticity module has been approximated 325±25 kPa based on the curves obtained from the comparison of experimental data from atomic force microscopy and Hertz and JKR contact theories.

کلیدواژه‌ها English

Gastric cancer
Atomic Force Microscopy
contact models
Young modulus
[1] Mahmoodi F, Akrami H. Evaluate the inhibitory effect of ibuprofen on metastasis and invasion in Gastric cancer stem cells. J Shahrekord Univ Med Sci. 2015; 17(4): 88-96.
[2] Ayremlou N, Mozdarani H, Mowla SJ, Delavari A. An Investigation of the Effect of Hypoxia on Expression of 107-miR in Gastric Cancer Cell Lines MKN-45 and AGS. J Babol Univ Med Sci. 2015;17(10):39-45.
[3] Bao B. Wang Z. Ali S. Ahmad A. Azmi A S. Sarkar S H. Banerjee S. Kong D. Li Y. Thakur S and Sarkar F H. 2012. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res. 5(3): p. 355-364.
[4] Dempsey D.T. Stomach. In: Andersen D.K. Billiar T.R. Dunn D.L. Hunter J.G. Pollock R.E (editors) Schwartz’s principles of surgery. 8th ed. New York, McGraw Hill Co. 2005; 933-96.
[5] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D, et al. Global cancer statistics. CA Cancer J Clin 2011; 61 (2): 69-90.
[6] Moshrefi. AM, Hosseini. SM, Evaluation of kidney and liver function factors following treatment with silver nanoparticles in the xenograft model of cancer induced by category Gastric cancer cell nude in transgenic mice. 12th Iranian veterinary students congress, iran. 2018. Semnan university.
[7] Tsamis A, Bothe W, Kvitting JP, Swanson JC,Miller DC, Kuhl E. Active contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart. J Mech Behav Biomed Mater 2011; 4(7):1167-76.
[8] Baohua Ji, Gang Bao. Cell and molecular biomechanics: perspectives and challenges. ACTA MECH SOLIDA SIN 2011; 24(1): 27-51.
[9] Davidson L, von DM, Zhou J. Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 2009; 41(11): 2147-62.
[10] Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. Atomic force microscopy probing of cell elasticity. Micron 2007; 38(8): 824-33.
[11] Franz CM, Puech PH. Atomic Force Microscopy: A versatile tool for studying cell morphology, adhesion and mechanics. Cell Mol Bioeng 2008; 1(4): 289-300.
[12] Webb HK, Truong VK, Hasan J, Crawford RJ, Ivanova EP. Physico-mechanical characterisation of cells using atomic force microscopy-current research and methodologies. J Microbiol Methods 2011;86(2): 131-9.
[13] Zhou ZL, Ngan AH, Tang B, Wang AX. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. J Mech Behav Biomed Mater 2012;8: 134-42.
[14] Li QS, Lee GY, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 2008; 374(4): 609-13.
[15] Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 2001;34(12): 1545-53.
[16] Lieber SC, Aubry N, Pain J, Diaz G, Kim SJ, Vatner SF. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol 2004; 287(2): H645-H651.
[17] Rico F, Roca-Cusachs P, Gavara N, Farre R, Rotger M, Navajas D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nonlin Soft Matter Phys 2005; 72(2 Pt 1): 021914.
[18] Ghaderi. SH. Mechanical properties of carbon nanotubes form a generalized modified molecular structural mechanics model. Journal of solid and fluid mechanics, 2015. 4(4):75-85.
[19] Jiang, L. Wang, Sh. Shi, Zh. Jin, Ch. Utama, M. Zhao, S. Shen, Y. R. Gao, H. J. Zhang, G. and Wang, F. 2018. Manipulation of domain-wall solitons in bi- and trilayer graphene, nature nanotechnology, 18, pp.1-6.
[20] Sadeghzadeh, S. and Korayem, M. H. 2016. Effects of damping and stiffness of AFM cantilever on the imaging of fine surfaces. Microscopy Research and Technique, 79 (10), pp. 982-992.
[21] Korayem, M. H. Sooha, Y. H, and Rastegar, Z. 2018. Modeling and simulation of viscoelastic biological particles’ 3D manipulation using atomic force microscopy, Applied Physics A, 124 (4), pp 1-13.
[22] Korayem, M. H. Hefzabad, R. N. Homayooni, A. and Aslani, H. 2016. Molecular dynamics simulation of nanomanipulation based on AFM in liquid ambient. Applied Physics A, 122 (11), pp. 977-987.
[23] Sadeghzadeh, S. and Korayem, M. H. 2017. Role of mechanical and thermal nonlinearities in imaging by Atomic Force Microscope. International Journal of Mechanical Sciences, 122, pp. 255-266.
[24] Zarei B, Bathaee S.H, Taheri M, Momeni M. Second Phase of Nanomanipulation of Particles by Atomic Force Microscopy Using Coulomb, HK, and LuGre Friction Models. Modares Mechanical Engineering. 2019;19(1):181-190.
[25] M. Habib Nejad Korayem, M. Taheri, H. Khaksar, S. H. Bathaee, Using Micro/Nano Scale Contact Models in 3D Manipulation of Deformation of Au Particles Under Angular Effect, Iranian Journal of Manufacturing Engineering, Vol. 7, No. 5, pp. 33- 43, 2020.
[26] Ghaderi, R. 2016. Dynamic modeling and vibration analysis of piezoelectric microcantilever in AFM application. International Journal of Mechanics and Materials in Design, 12 (3), pp.413-425.
[27] M. Taheri, 3D modeling of nanoparticle manipulation in air using HK friction model, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 275-282, 2016.
[28] M. Taheri, Manipulation dynamic modeling for micro/nano devices manufacturing using the LuGre friction model, Iranian Journal of Manufacturing Engineering, Vol. 3, No. 2, pp. 45-53, 2016.
[29] Falvo, M. R. and Superfine, R. 2000. Mechanics and Friction at the Nanometer Scale, Journal of Nanoparticle Research, 2 (3), pp. 237-248.
[30] Tafazzoli, A. Pawashe, Ch. and Sitti, M. 2005. Atomic Force Microscope based Two-Dimensional Assembly of Micro.Nanoparticles, Assembly and Task Planning, pp. 223–235.
[31] Kangmin X. Kalantari, M. and Qian, X. 2012. Efficient AFM-Based Nanoparticle Manipulation Via Sequential Parallel Pushing, IEEE Transactions On Nanotechnology, 11(4), pp. 666-675.
[32] Tafazzoli, A. and Sitti, M. 2004. Dynamic Behavior and Simulation of Nanoparticles Sliding During Nanoprobe-Based Positioning, International Mechanical Engineering Congress, Anaheim, CA.
[33] Kasas, S. Longo, G. and Dietler, G. 2013. Mechanical properties of biological specimens explored by atomic force microscopy, Journal of Physics D: Applied Physics, pp. 1-12.
[34] Li, Q. S. Lee, G. Y. H. C.N. Ong, C. N. Lim, C. T. 2008. AFM indentation study of breast cancer cells, Biochemical and Biophysical Research Communications, 374, pp. 609-613
[35] Ahmadi Soufivand A, Navidbakhsh M, Soleimani M. Mechanical Behavior Obtaining of Cardiac Contracting Cell, Using Atomic Force Microscopy (AFM) and Analytical Relations. J Isfahan Med Sch 2014; 32(290): 947-56
[36] Garci, P. D. and Garci, R. 2018. Determination of the Elastic Moduli of a Single Cell Cultured on a Rigid Support by Force Microscopy, Biophysical Journal, 114, pp. 2923–2932.
[37] Horng, T. L. 2000, A Deformation Formula for Circular Crowned Roller Compressed Between Two Flat Plates, Journal of tribology, 122, pp. 405-411.
[37] Hertz, H. 1881, Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, 92, pp. 156-171.
[38] Johnson, K. L. Kendall, K. and Roberts, A. D. 1971, Surface energy and the contact of elastic solid, Proc. Roy. Soc. London A, 324, pp.301-313.
[39] Davis, N. F. Mulvihill, J. J. E. Mulay, S. Cunnane, E. M. Bolton, D. M. and Walsh, M. T. 2017, Urinary Bladder Versus Gastrointestinal Tissue: a Comparative Study of Their Biomechanical Properties for Urinary Tract Reconstruction, Urology, 11, pp.1-24.
[40] Mehdi Mohammadi, Ali Jalili, Bahram Nikkhoo, Fardshad Sheikhesmaieli.Prevalence of CD34, CD326 and STRO-1 expression in gastric precancerous and cancer samples: A preliminary study. SJKU 2019; 24 (5): 69-76.