مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی دینامیکی فرآیند بورینگ در محیط هندسی مبتنی بر B-REP

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
از مهم‌ترین اهداف شبیه‌سازی عملیات ماشین‌کاری، پیش‌بینی رفتار دینامیکی فرآیند است. بنابراین بررسی و تحلیل پارامترهای اثرگذار بر روی دینامیک فرآیند از اهمیت بالایی برخودار است. از عوامل مهم و اثرگذار، ارتعاشات ماشین‌کاری است. در این مقاله شرایط ارتعاشی حاکم بر فرآیند، توسط مدل‌سازی دینامیکی ابزار بورینگ بررسی شده است. نسبت طول به قطر بالای ابزار بورینگ و انعطاف‌پذیری آن سبب ارتعاشات ماشین‌کاری می‌شود. دامنه ارتعاشات نوک ابزار تابعی از مشخصات دینامیکی ابزار است که می‌تواند منجر به پایداری یا ناپایداری فرآیند شود. در نسبت‌های طول به قطر پایین، صلبیت ابزار بالا است و فرآیند در اکثر شرایط برشی در محدوده پایداری قرار دارد. ثوابت دینامیکی ابزار با استفاده از نتایج آزمون ضربه استخراج و مدل‌سازی دینامیکی فرآیند با استفاده از روش مدل‌سازی جسم صلب، در نرم‌افزار ایسیس (ACIS) که ماهیت هندسی مبتنی بر نمایش مرزی (B-rep) دارد، پیاده‌سازی شده است و یک روش نوین برای شبیه‌سازی معادله دینامیکی ابزار با استفاده از روش مدل‌سازی جسم صلب در یک محیط دقیق هندسی ارایه شده است. برای توسعه مدل دینامیکی نیرو در حوزه زمان از ثوابت برشی استخراج‌شده توسط روش ساختارگرا استفاده شده است. همچنین پارامترهای دینامیکی حوزه زمان از قبیل نیرو، شتاب و جابه‌جایی در محیط سیمولینک شبیه‌سازی شده‌اند. نتایج موید این است که مدل هندسی ارایه‌شده با درنظرگرفتن دینامیک ابزار به خوبی قادر به تخمین سیگنال نیرو و تغییرات مساحت براده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic Simulation of Boring Process in B-REP Geometric Modeling Environment

نویسندگان English

M. Mehrabi Nasab
B. Moetakef Imani
Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Prediction of the dynamic behavior of machining operations during the process is the main challenge of machining simulations. Therefore, the investigation of effective parameters in dynamic behavior is of great importance. Machining vibration is one of the most important factors. This article studied the vibration of the process by developing the dynamic model of the boring bar. The high length-to-diameter ratio of the boring tool and its flexibility cause machining vibrations. The amplitude of the tooltip vibrations is a function of the dynamic characteristic of the tool which can lead to the stability or instability of the process. Tool rigidity at low diameter to length ratios is high, and in most cutting conditions the process is stable. The impact test is used to extract the tool's dynamic parameters and dynamic modeling of the process is developed inside the environment of ACIS software which is a powerful Boundary Representation (B-rep) solid modeling engine and it is proposed a novel method for simulating the dynamic equation of boring bar by using a solid modeling technique in a precise geometric environment. The mechanistic approach is used to modeling cutting mechanistic to develop the dynamic force model in the time domain. Also, dynamic time-domain parameters such as force, acceleration, and displacement in the Simulink environment are simulated. The results confirm that the presented geometrical model by considering the tool dynamics is well capable of estimating the force signal and the chip area changes.

کلیدواژه‌ها English

Boring
Geometric Simulation
Dynamic
ACIS
Zhao G, Cao X, Xiao W, Liu Q, Jun MBG. STEP-NC feature-oriented high-efficient CNC machining simulation. International Journal of Advanced Manufacturing Technology. 2020;106(5):2363-2375. [Link] [DOI:10.1007/s00170-019-04770-3]
Hendriko H. Cut geometry calculation for the semifinish five-axis milling of nonstraight staircase workpieces. Journal of Mechanical Science and Technology. 2020;34(1):1301-1311 [Link] [DOI:10.1007/s12206-020-0229-x]
Gao G, Baohai W, Dinghua Z, Ming L. Mechanistic identification of cutting force coefficients in bull-nose milling process. Chinese Journal of Aeronautics. 2013;26(3):823-830. [Link] [DOI:10.1016/j.cja.2013.04.007]
Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I. Virtual process systems for part machining operations. CIRP Annals. 2014;63(2):585-605. [Link] [DOI:10.1016/j.cirp.2014.05.007]
Sai L, Belguith R, Baili M, Dessein G, Bouzid W. An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis ball end milling. Journal of Manufacturing Processes. 2018;34:7-17. [Link] [DOI:10.1016/j.jmapro.2018.05.018]
Du J, Zhi H, Liu P, Bai Y. A novel method of calculating the engagement length of cutting edge in five-axis machining. The International Journal of Advanced Manufacturing Technology. 2019;102(9-12):3977-3994. [Link] [DOI:10.1007/s00170-019-03470-2]
Wei ZC, Guo ML, Wang MJ, Li SQ, Liu SX. Prediction of cutting force in five-axis flat-end milling. The International Journal of Advanced Manufacturing Technology. 2018;96(1-4):137-152 [Link] [DOI:10.1007/s00170-017-1380-0]
Wang W, Li Y, Shen W, Li X, Mou W. An industrial case study of feature-based in-process workpiece modeling. in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 14-17 October 2012, Seoul, South Korea. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/ICSMC.2012.6377828]
Joy J, Feng HY. Frame-sliced voxel representation: An accurate and memory-efficient modeling method for workpiece geometry in machining simulation. Computer-Aided Design. 2017;88:1-13 [Link] [DOI:10.1016/j.cad.2017.03.006]
Gong X, Feng HY. Cutter-workpiece engagement determination for general milling using triangle mesh modeling. Journal of Computational Design and Engineering. 2016;3(2):151-160. [Link] [DOI:10.1016/j.jcde.2015.12.001]
Lee SW, Nestler A. Virtual workpiece: workpiece representation for material removal process. The International Journal of Advanced Manufacturing Technology. 2012;58(5-8):443-463. [Link] [DOI:10.1007/s00170-011-3431-2]
Inui M, Huang Y, Onozuka H, Umezu N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing. 2020;48:520-527. [Link] [DOI:10.1016/j.promfg.2020.05.078]
Weinert K, Du S, Damm P, Stautner M. Swept volume generation for the simulation of machining processes. International Journal of Machine Tools and Manufacture. 2004;44(6):617-628. [Link] [DOI:10.1016/j.ijmachtools.2003.12.003]
Spence AD, Abrari F, Elbestawi MA. Integrated solid modeller based solutions for machining. Computer-Aided Design. 2000;32(8-9):553-568. [Link] [DOI:10.1016/S0010-4485(00)00042-7]
Spence A, Altintas Y. A solid modeller based milling process simulation and planning system. Journal of Manufacturing Science and Engineering. 1994;116(1):61-69. [Link] [DOI:10.1115/1.2901810]
Moetakef-Imani B, Elbestawi M. Geometric simulation of ball-end milling operations. Journal of Manufacturing Science and Engineering. 2001;123(2):177-184. [Link] [DOI:10.1115/1.1347034]
Kouravand S, Moetakef-Imani B. Developing a surface roughness model for end-milling of micro-channel. Machining Science and Technology. 2014;18(2):299-321. [Link] [DOI:10.1080/10910344.2014.897846]
Lazoglu I, Boz Y, Erdim H. Five-axis milling mechanics for complex free form surfaces. CIRP annals. 2011;60(1):117-120. [Link] [DOI:10.1016/j.cirp.2011.03.090]
Boz Y, Erdim H, Lazoglu I. A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three-and five-axis virtual milling. The International Journal of Advanced Manufacturing Technology. 2015;81(5-8):811-823. [Link] [DOI:10.1007/s00170-015-7251-7]
Aras E, Yip-Hoi D. Geometric modeling of cutter/workpiece engagements in three-axis milling using polyhedral representations. Journal of Computing and Information Science in Engineering. 2008;8(3):031007. [Link] [DOI:10.1115/1.2960490]
Altintas Y. Manufacturing automation. Cambridge: Cambridge University Press; 2012. [Link]
Ebrahimi M, Moetakef-Imani B. Dynamic simulation of boring process in time and frequency domain. 9th International Conference on Acoustics and Vibration (ISAV2019), 24-25 December 2019, Tehran, Iran. Tehran: Iranian Acoustics and Vibrations Association; 2019. [Link]
Schmitz TL, Smith KS. Machining dynamics. Berlin: Springer; 2014. [Link]