[1] Moradi, M., Karami Moghadam, M. and Asgari, F., 2020. 4D printing additive manufacturing review; Mechanisim, Chalanges, Applications and Future. Modares Mechanical Engineering, 20(4), pp.1063-1077.
[2] Zein, I., Hutmacher, D.W., Tan, K.C. and Teoh, S.H., 2002. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), pp.1169-1185.
[3] Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R., 2012. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnology advances, 30(1), pp.321-328.
[4] Urayama, H., Kanamori, T. and Kimura, Y., 2002. Properties and biodegradability of polymer blends of poly (l‐lactide) s with different optical purity of the lactate units. Macromolecular materials and engineering, 287(2), pp.116-121.
[5] Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., Ibrahim, N.A., Rahman, R.A., Jokar, M. and Darroudi, M., 2010. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International journal of nanomedicine, 5, pp.573-579.
[6] Lim, L.T., Auras, R. and Rubino, M., 2008. Processing technologies for poly (lactic acid). Progress in polymer science, 33(8), pp.820-852.
[7] Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials & Design, 83, pp.768-776.
[8] Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 102, pp.276-283.
[9] Meng, S., He, H., Jia, Y., Yu, P., Huang, B., & Chen, J. (2017). Effect of nanoparticles on the mechanical properties of acrylonitrile–butadiene–styrene specimens fabricated by fused deposition modeling. Journal of Applied Polymer Science, 134(7).
[10] Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, pp.143-157.
[11] Vishwas, M., & Basavaraj, C. K. (2017). Studies on Optimizing Process Parameters of Fused Deposition Modelling Technology for ABS. Materials Today: Proceedings, 4(10), pp.10994-11003.
[12] Çantı, E., & Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, 24(1), pp.171-176.
[13] Moradi, M., Karami Moghadam, M., Shamsborhan, M. and Bodaghi, M., 2020. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. Journal of Composites Science, 4(1), pp.1-17.
[14] Moradi, M., Falavandi, H., Karami Moghadam, M. and Shaikh Mohammad Meiabadi, M., 2020. Experimental Investigation of Laser Cutting Post Process of Additive Manufactured Parts of Poly Lactic Acid (PLA) by 3D Printers Using FDM Method. Modares Mechanical Engineering, 20(4), pp.999-1009.
[15] Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M. and Falavandi, H., 2020. Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers, 12(3), pp.550-568.
[16] Abeykoon, C., Sri-Amphorn, P. and Fernando, A., 2020. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), pp.284-297.
[17] El Magri, A., El Mabrouk, K., Vaudreuil, S. and Ebn Touhami, M., 2019. Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. Journal of Thermoplastic Composite Materials, 0892705719847244.
[18] Moradi, M., Meiabadi, S. and Kaplan, A., 2019. 3D printed parts with honeycomb internal pattern by fused deposition modelling; experimental characterization and production optimization. Metals and Materials International, 25(5), pp.1312-1325.
[19] Chen, Y., Weng, C., Wang, Z., Maertens, T., Fan, P., Chen, F., Zhong, M., Tan, J. and Yang, J., 2019. Preparation of polymeric foams with bimodal cell size: An application of heterogeneous nucleation effect of nanofillers. The Journal of Supercritical Fluids, 147, pp.107-115.
[20] Asadi-Eydivand, M., Solati-Hashjin, M., Farzad, A. and Osman, N.A.A., 2016. Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robotics and Computer-Integrated Manufacturing, 37, pp.57-67.
[21] Hasanzadeh, R., Azdast, T. and Doniavi, A., 2020. Thermal Conductivity of Low-Density Polyethylene Foams Part II: Deep Investigation using Response Surface Methodology. Journal of Thermal Science, 29(1), pp.159-168.
[22] Rahim, T.N.A.T., Abdullah, A.M. and Md Akil, H., 2019. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polymer Reviews, 59(4), pp.589-624.
[23] Karageorgiou, V. and Kaplan, D., 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), pp.5474-5491.