مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بهینه سازی شرایط فرآیندی چاپ سه بعدی FDM قطعات پلیمری زیست تخریب پذیر پلی لاکتیک اسید

نوع مقاله : پژوهشی اصیل

نویسندگان
دکتری تخصصی مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران
چکیده
در تحقیق حاضر، بررسی خواص مکانیکی قطعات پلی لاکتیک اسید تولید شده با روش چاپگر سه بعدی FDM انجام گرفته است. بررسی و بهینه­سازی شرایط فرآیندی چاپ سه بعدی توسط روش طراحی آزمایش (DOE) تاگوچی به منظور بهبود خواص قطعات پلی لاکتیک اسید در دستور کار قرار گرفته است. درصد پرشدگی (در سه سطح 30، 50 و 70 درصد)، زاویه رستر (در سه حالت 0/90، 30/30- و 45/45- درجه) و ضخامت لایه (در سه سطح 200، 250 و 300 میکرومتر) به عنوان پارامترهای فرآیندی انتخاب شده و اثر آن­ها بر روی چگالی (به عنوان معیاری از تخلخل)، استحکام به ضربه (به عنوان معیاری از خواص مکانیکی) و استحکام به ضربه ویژه (نسبت استحکام به ضربه به چگالی) بررسی شده است. از آنالیز واریانس (ANOVA) به منظور شناسایی پارامترهای موثر فرآیندی استفاده گردید. نتایج نشان دادند که درصد پرشدگی موثرترین پارامتر بر روی چگالی و استحکام به ضربه می­باشد و با کاهش آن، چگالی و استحکام به ضربه کاهش می­یابند و این کاهش به گونه­ای است که نسبت آن­ها (استحکام به ضربه ویژه) تغییرات اندکی را تجربه می­کند. ضخامت لایه موثرترین پارامتر بر روی استحکام به ضربه ویژه بود و با کاهش آن، استحکام به ضربه و استحکام به ضربه ویژه به دلیل تداخل رسترها افزایش یافت. شرایط بهینه برای دست­یابی به بهترین خواص مکانیکی شامل زاویه رستر 30/30- درجه و ضخامت لایه 200 میکرومتر بود و درصد پرشدگی بایستی نسبت به کاربرد مدنظر بهینه گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of FDM 3D Printing Process Parameters of Biodegradable Poly Lactic Acid Polymeric Samples

نویسندگان English

Rezgar Hasanzadeh
Taher Azdast
Ph.D., Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
چکیده English

In this study, the mechanical properties of poly lactic acid samples produced by FDM 3D printing technique were investigated. The 3D printing process parameters were optimized using design of experiment (DOE) Taguchi approach for achieving the optimum mechanical performance. In this regard, infill percentage (at three levels of 30, 50, and 70%), raster angle (at three states of 0/90, -30/30, and -45/45 degree), and layer thickness (at three levels of 200, 250, and 300 µm) were considered as process parameters for optimization procedure. Their effects on density (as porosity degree), impact strength (as mechanical property), and specific impact strength (the impact strength to density ratio) were investigated. Analysis of variance (ANOVA) was utilized to find the most effective processing parameters. The findings revealed that the infill percentage was the most effective parameter on the density and the impact strength. The density and the impact strength were reduced with the decrease of the infill percentage. These decrements were in a way that their ratio, specific impact strength, was almost constant. The layer thickness had the most influence on the specific impact strength. The specific impact strength was improved by reducing the layer thickness due to the raster entanglement. The optimum conditions to achieve the highest mechanical performance were the raster angle of 30/-30 degree and the layer thickness of 200 µ. The optimum infill percentage depended on the application.

کلیدواژه‌ها English

3D printing
Biodegradable
poly lactic acid
Mechanical properties
Optimization
FDM
[1] Moradi, M., Karami Moghadam, M. and Asgari, F., 2020. 4D printing additive manufacturing review; Mechanisim, Chalanges, Applications and Future. Modares Mechanical Engineering, 20(4), pp.1063-1077.
[2] Zein, I., Hutmacher, D.W., Tan, K.C. and Teoh, S.H., 2002. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), pp.1169-1185.
[3] Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R., 2012. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnology advances, 30(1), pp.321-328.
[4] Urayama, H., Kanamori, T. and Kimura, Y., 2002. Properties and biodegradability of polymer blends of poly (l‐lactide) s with different optical purity of the lactate units. Macromolecular materials and engineering, 287(2), pp.116-121.
[5] Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., Ibrahim, N.A., Rahman, R.A., Jokar, M. and Darroudi, M., 2010. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International journal of nanomedicine, 5, pp.573-579.
[6] Lim, L.T., Auras, R. and Rubino, M., 2008. Processing technologies for poly (lactic acid). Progress in polymer science, 33(8), pp.820-852.
[7] Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials & Design, 83, pp.768-776.
[8] Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 102, pp.276-283.
[9] Meng, S., He, H., Jia, Y., Yu, P., Huang, B., & Chen, J. (2017). Effect of nanoparticles on the mechanical properties of acrylonitrile–butadiene–styrene specimens fabricated by fused deposition modeling. Journal of Applied Polymer Science, 134(7).
[10] Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, pp.143-157.
[11] Vishwas, M., & Basavaraj, C. K. (2017). Studies on Optimizing Process Parameters of Fused Deposition Modelling Technology for ABS. Materials Today: Proceedings, 4(10), pp.10994-11003.
[12] Çantı, E., & Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, 24(1), pp.171-176.
[13] Moradi, M., Karami Moghadam, M., Shamsborhan, M. and Bodaghi, M., 2020. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. Journal of Composites Science, 4(1), pp.1-17.
[14] Moradi, M., Falavandi, H., Karami Moghadam, M. and Shaikh Mohammad Meiabadi, M., 2020. Experimental Investigation of Laser Cutting Post Process of Additive Manufactured Parts of Poly Lactic Acid (PLA) by 3D Printers Using FDM Method. Modares Mechanical Engineering, 20(4), pp.999-1009.
[15] Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M. and Falavandi, H., 2020. Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers, 12(3), pp.550-568.
[16] Abeykoon, C., Sri-Amphorn, P. and Fernando, A., 2020. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), pp.284-297.
[17] El Magri, A., El Mabrouk, K., Vaudreuil, S. and Ebn Touhami, M., 2019. Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. Journal of Thermoplastic Composite Materials, 0892705719847244.
[18] Moradi, M., Meiabadi, S. and Kaplan, A., 2019. 3D printed parts with honeycomb internal pattern by fused deposition modelling; experimental characterization and production optimization. Metals and Materials International, 25(5), pp.1312-1325.
[19] Chen, Y., Weng, C., Wang, Z., Maertens, T., Fan, P., Chen, F., Zhong, M., Tan, J. and Yang, J., 2019. Preparation of polymeric foams with bimodal cell size: An application of heterogeneous nucleation effect of nanofillers. The Journal of Supercritical Fluids, 147, pp.107-115.
[20] Asadi-Eydivand, M., Solati-Hashjin, M., Farzad, A. and Osman, N.A.A., 2016. Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robotics and Computer-Integrated Manufacturing, 37, pp.57-67.
[21] Hasanzadeh, R., Azdast, T. and Doniavi, A., 2020. Thermal Conductivity of Low-Density Polyethylene Foams Part II: Deep Investigation using Response Surface Methodology. Journal of Thermal Science, 29(1), pp.159-168.
[22] Rahim, T.N.A.T., Abdullah, A.M. and Md Akil, H., 2019. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polymer Reviews, 59(4), pp.589-624.
[23] Karageorgiou, V. and Kaplan, D., 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), pp.5474-5491.