مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی فشردن در کانال‌های هم‌مقطع زاویه‌دار میله‌های دوفلزی فولاد/مس و تعیین اثر ضخامت پوسته مسی برکشیدگی سطحی ایجاد شده

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه رازی
چکیده
به منظورتعیین اثر عملیات فشردن در کانال‌های هم‌مقطع زاویه دار (ایکپ) بر رفتار تنش-کرنش هسته فولادی ماده دوفلزی فولاد/مس و همچنین تعیین اثر ضخامت پوسته مسی بر کشیدگی سطحی ایجاد شده طی فرایند ایکپ، نمونه‌های دوفلزی با جازدن میله‌های فولادی با قطر mm8 در داخل لوله‌های مسی با ضخامتmm75/0تهیه شدند. نمونههای دوفلزی و تک جزئی فولادی با استفاده از یک قالب ایکپ با زاویه خم داخلیo90 و خارجی o30 تحت فرایند ایکپ قرار گرفتند. در طول مدت حرکت نمونه‌ها از درون قالب ایکپ، مقدار نیروی اعمالی و جابجائی سنبه اندازه‌گیری و ثبت گردید. بر روی نمونه‌های اولیه و ایکپ شده، آزمون کشش انجام شد. همچنین مدل جدیدی برای بیان وابستگی کشیدگی سطحی به قطر نمونه دوفلزی، ضخامت پوسته و خواص استحکامی اجزاء سازنده ماده دوفلزی ارائه شد. اثر ضخامت پوسته بر کشیدگی سطحی با روش اجزاء محدود بررسی گردید. مطابق نتایج به دست آمده پس از یک بار فرایند ایکپ استحکام نهائی هسته فولادی نمونه دوفلزی فولاد/مس و فولادی تک جزئی به ترتیب 60 و 108 درصد افزایش یافت. نیروی فشردن نمونه‌های دوفلزی فولاد/مس به داخل قالب ایکپ54 درصد کمتر از نمونه‌های تک جزئی فولادی بود. طبق نتایج حاصل از مدلسازی با روش اجزاء محدود، میزان بیشینه کشیدگی سطحی با افزایش ضخامت پوسته به صورت خطی کاهش یافت. بین نتایج مدل تحلیلی ارائه شده برای بیان اثر ضخامت پوسته بر بیشینه کشیدگی سطحی و نتایج حاصل از روش اجزاء محدود هم‌خوانی خوبی مشاهده شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of equal-channel angular pressing of steel/copper bimetallic rods and effect of Cu-shell thickness on imposed surface stretch

نویسندگان English

Mohamad Etemadi
Ali Mohammad Rashidi
Razi University
چکیده English

To determination of equal-channel angular pressing(ECAP) process on the stress-strain behavior of steel core of steel/copper bimetal and also effect of Cu-shell thickness on the created surface stretch during ECAP, the bimetallic samples composed of steel rods with 8 mm diameter and copper shells with 0.75 mm thickness are prepared. The both bimetallic samples and steel rods with 9.5 mm are subjected to consecutive ECAP process using die with inner angle 90o and an outer curvature corner angle of 30o. The applied load and punch displacement are recorded during samples passing through an ECAP die. The tensile testing is carried out on both the initial and ECAPed series. Moreover, dependence of surface stretch to diameters, shell thickness and strength properties of constituents of core/shell bimetallic rods is analytically modeled. Then, the finite element method(FEM) is used to investigate the effect of Cu-shell thickness. The obtained results revealed that the ultimate tensile strength of bimetallic core and steel rods are improved approximately 60% and 108% by ECAP deformation, respectively. The applied punch load for passing of bimetallic sample through an ECAP die is 54% less than the ones for steel rod. According to the FEM results, the maximum value of surface stretch is linearly decreased with increasing the thickness of copper shell. The obtained results show a good agreement between the analytical model and FEM approach.

کلیدواژه‌ها English

Equal channel angular pressing
Steel/copper bimetallic materials
Surface stretch
Shell thickness
Ultimate tensile strength
[1]. V. Sega,l Equal-Channel Angular Extrusion (ECAE): From a Laboratory Curiosity to an Industrial Technology, Metals 2020; 10(2): 244.
[2]. S. Ferrasse, V. M. Segal, F. Alford, J. Kardokus, S. Strothers, Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries, Materials Science and Engineering: A, 2008; 493:130.
[3]. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 2006; 51: 881.
[4]. M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Review: Processing of metals by equal-channel angular pressing, Journal of Materials Science, 2001; 36(12): 2835.
[5]. T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Materials Science and Engineering: A, 2007; 462: 3.
[6]. A. Eivani, A. K.Taheri, A New Method for Producing Bimetallic Rods, Materials Letters, 2007; 61: 411.
[7]. R. Lapovok, M. Dubrovsky, A. Kosinova, G. Raab, Effect of Severe Plastic Deformation on the Conductivity and Strength of Copper-Clad Aluminium Conductors, Metals, 2019; 9:960.
[8]. S. Ghadimi, M. Sedighi, M. Sedighi, F. Djavanroodi, A. Asgari, Experimental and Numerical Investigation of a Cu–Al Bimetallic Tube Produced by ECAP, Materials and Manufacturing Processes, 2014; 30(10):1.
[9]. H. Mirzakouchakshirazi, A.R. Eivani, Sh. Kheirandish, Effect of Post-Deformation Annealing Treatment on Interface Properties and Shear Bond Strength of Al-Cu Bimetallic Rods Produced by Equal Channel Angular Pressing, Iranian Journal of Materials Science & Engineering, 2017; 14(4): 25.
[10]. L. Núria, E.A. Maria, R. Antoni, C.J. Maria, Equal Channel Angular Pressing of Cu-Al Bimetallic Rod, Materials Science Forum, 2012; 706-709: 1811.
[11]. A.E. Medvedev, R. Lapovok, E. Koch, H.W. Höppel, M. Göken, Optimisation of Interface Formation by Shear Inclination: Example of Aluminium-Cooper Hybrid Produced by ECAP with Back-Pressure, Materials & Design, 2018; 146: 142.
[12]. M. Zebardast, A. Karimi Taheri, The Cold Welding of Copper to Aluminum using Equal Channel Angular Extrusion (ECAE) Process, Journal of Materials Processing Technology, 2011; 211: 1034.
[13]. K. Narooei, A. Karimi Taheri, Strain field and extrusion load in ECAE process of bi-metal circular cross section, Applied Mathematical Modelling, 2012; 36: 2128.
[14]. W. Hongyu, S. Jie, W. Zhenting, W. Qinglong, Z. Dewen, Z. Dianhua, Analysis of eccentric unbonded bimetal rod in ECAP based on different arrangements of soft and hard metals, Applied Mathematical Modelling, 2017; 47: 501.
[15]. A.P. Zhilyaev, T. Werner, J.M. Cabrera, Characterization of bimetallic interface in Cu–Al and Ni–Cu rods cold welded by equal channel angular pressing, Advanced Engineering Materials, 2020; 22(1): 1900653.
[16]. Y. Li, H.P. Ng, H.D. Jung, H.E. Kim, Y. Estrin, Enhancement of mechanical properties of grade 4 titanium by equal channel angular pressing with billet encapsulation, Materials Letters, 2014; 114:144.
[17]. Y. Qi, R. Lapovok, Y. Estrin, Microstructure and electrical conductivity of aluminium/steel bimetallic rods processed by severe plastic deformation, Journal of Materials Science, 2016; 51: 6160.
[18]. A. Derakhshandeh, M. Nili-Ahmadabadi, A. Khajezade, H. Shahmir, Room temperature flow behavior of Ti deformed by equal-channel angular pressing using core–sheath method, Advanced Engineering Materials; 2016; 19 (2): 1600552.
[19]. H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani, A. Khajezade, T.G. Langdon; Evaluating a new core–sheath procedure for processing hard metals by equal-channel angular pressing, Advanced Engineering Materials; 2014; 16: 918.
[20]. Y. Wang, Y. Gao, Y. Li, W. Zhai, L. Sun, C. Zhang, Review of preparation and application of copper–steel bimetal composites, Emerging Materials Research, 2019; 8(4): 538.
[21]. H. Nagasawa, T. Kohida, S. Aoki, and S. Katayama, Study on application of copper clad steel wire to contact wire, Railway Technical Research Institute, Quarterly Reports, 1992; 33: 98.
[22]. A. M. Rashidi, M. Etemadi, Investigation wavy interface forming and stretching in severe plastic deformed copper/steel bimetallic rod, Mechanics of Advanced Materials and Structures, 2020; published online: 10.1080/15376494.2020.1747668.
[23]. B.W. Li, H.P. Zhao, Q.H. Qin, X.Q. Feng, S.W. Yu, Numerical study on the effects of hierarchical wavy interface morphology on fracture toughness, Computational Materials Science, 2012; 57: 14.
[24]. J. Cui, G. Sun, G. Li, Z. Xu, P.K. Chu, Specific wave interface and its formation during magnetic pulse welding, Applied Physics Letters, 2014; 105: 221901.
[25]. W. Chen, W. He, Z. Chen, Z. Zhou, Q. Liu, Effect of wavy profile on the fabrication and mechanical properties of Al/Ti/Al composites prepared by rolling bonding: experiments and finite element simulations, Advanced Engineering Materials, 2019; 21: 1900637.
[26]. M.H. Shaeri, F. Djavanroodi, M. Sedighi, S. Ahmadi, M.T. Salehi, S.H. Seyyedein, Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing; The Journal of Strain Analysis for Engineering Design, 2013; 48(8): 512.
[27]. A.V. Nagasekhar, S.C. Yoon, Y. Tick-Hon, H.S. Kim, An experimental verification of the finite element modelling of equal channel angular pressing, Computational Materials Science, 2009; 46: 347.
[28]. M.A. Agwa, M.N. Ali, A.E. Al-Shorbagy, Optimum processing parameters for equal channel angular pressing, Mechanics of Materials, 2016; 100: 1.
[29]. R. Naseri, M. Kadkhodayan, M. Shariati, An experimental investigation of casing effect on mechanical properties of billet in ECAP process, The International Journal of Advanced Manufacturing Technology, 2017; 90: 3203.
[30]. B.V. Patil, U. Chakkingal, T.S.P. Kumar, Influence of friction in equal channel angular pressing- A study with simulation”, Metal, 2008; 13: 15.5.
[31]. S. Kumar, Principles of Metal Working, Oxford, 1985.
[32]. A. Babaeia, M.M. Mashhadi, Tubular pure copper grain refining by tube cyclic extrusion compression (TCEC) as a severe plastic deformation technique, Progress in Natural Science: Materials International, 2014; 24: 623.
[33]. A. M. Prior, Application of implicit and explicit finite element techniquesto metal forming, Journal of Materials Processing Technology, 1994; 45: 649.
[34]. M. Wang, H. Yang, Z. Sun, L. Guo, X. Ou, Dynamic explicit FE modeling of hot ring rolling process, Transactions of Non Ferrous Society of China, 2006; 16: 1274.
[35]. L. Wang, H. Long, Investigation of material deformation in multi-pass conventional metal spinning, Materials & Design, 2011; 32(5): 2891.
[36]. Atlas of Stress-Strain Curves, 2nd ed., ASM International, Materials Park, OH, 2002.
[37]. R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Materials Science and Engineering A, 2006; 441: 1.
[38]. T. Zhao, S. Zhang, G. Zhang, H. Song, M. Cheng, Hardening and softening mechanisms of pearlitic steel wire under torsion, Materials & Design, 2014; 59: 397.
[39]. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, R. Manna, Ultra-high-strength interstitial-free steel processed by equal-channel angular pressing at large equivalent strain, Metallurgical and Materials Transactions A, 2016; 47: 1803.
[40]. Y. Iwahashi, Z. Horita, M. Nemoto, J. Wang, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta materialia, 1996; 35: 143.
[41]. M.H. Paydar, M. Reihanian, R. Ebrahimi, T.A. Dean, M.M. Moshksar, An upper-bound approach for equal channel angular extrusion with circular cross-section, Journal of Materials Processing Technology, 2008; 198: 48.
[42]. A. Shokuhfar, O. Nejadseyfi, The influence of friction on the processing of ultrafine-grained/nanostructured materials by equal-channel angular pressing, JMEPEG, 2014; 23: 1038.
[43]. N. Medeiros, J.F.C. Lins, L.P. Moreira, J.P. Gouveˆa, The Role of the friction during the equal channel angular pressing of an IF-steel billet, Materials Science and Engineering A, 2008; 489(1-2): 363.
[44]. F.P. Beer, E. R. Johnston, J.T. DeWolf, D.F. Mazurek, Mechanics of Materials, 7th ed., McGraw-Hill Education, 2014.
[45]. M.A. Ranaei, A. Afsari, S.Y. Ahmadi Brooghani, M.M. Moshksar, Microstructure, Mechanical and Electrical Properties of Commercially Pure Copper Deformed Severely by Equal Channel Angular Pressing, Modares Mechanical Engineering, 2015; 14(15): 257.