منابع و مراجع
[1] M. Malaki, H. Ding, A review of ultrasonic peening treatment, Materials & Design 87 (2015) 1072-1086. https://doi.org/10.1016/j.matdes.2015.08.102
[2] T. Deguchi, M. Mouri, J. Hara, D. Kano, T. Shimoda, F. Inamura, T. Fukuoka, K. Koshio, Fatigue strength improvement for ship structures by Ultrasonic Peening, Journal of Marine Science and Technology 17(3) (2012) 360-369. 10.1007/s00773-012-0172-3
[3] D. Yin, D. Wang, W. Li, X. Li, H. Zhang, S. Naher, Development of a new 3D model for the prediction of residual stress and fracture behaviour in Ti-6Al-4V after ultrasonic peening treatment, Journal of Materials Processing Technology 247 (2017) 29-39. https://doi.org/10.1016/j.jmatprotec.2017.03.033
[4] E.S. Statnikov, O.V. Korolkov, V.N. Vityazev, Physics and mechanism of ultrasonic impact, Ultrasonics 44 (2006) e533-e538. https://doi.org/10.1016/j.ultras.2006.05.119
[5] E.S. Statnikov, IIW Document XIII-2004-04 PHYSICS AND MECHANISM OF ULTRASONIC IMPACT TREATMENT, 2004.
[6] C. Guo, Z. Wang, D. Wang, S. Hu, Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models, Applied Surface Science 347 (2015) 596-601. https://doi.org/10.1016/j.apsusc.2015.04.128
[7] K.a.S. Yuan, Y. , Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue strength, Frattura ed Integrità Strutturale 9(34) (2015). 10.3221/IGF-ESIS.34.53
[8] K. Yuan, Y. Sumi, Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue 92 (2016) 321-332. https://doi.org/10.1016/j.ijfatigue.2016.07.018
[9] B. Fereidooni, M.R. Morovvati, S.A. Sadough-Vanini, Influence of severe plastic deformation on fatigue life applied by ultrasonic peening in welded pipe 316 Stainless Steel joints in corrosive environment, Ultrasonics 88 (2018) 137-147. https://doi.org/10.1016/j.ultras.2018.03.012
[10] M. Daavari, S.A.S. Vanini, E. Fereiduni, M.H. Rokni, Mechanical and electrochemical behaviors of butt-welded high temperature steel pipes, Engineering Failure Analysis 62 (2016) 287-299. https://doi.org/10.1016/j.engfailanal.2016.01.010
[11] M. Daavari, S.A. Sadough Vanini, Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment, Materials Letters 139 (2015) 462-466. https://doi.org/10.1016/j.matlet.2014.10.141
[12] M. Daavari, S.A.S. Vanini, The effect of ultrasonic peening on service life of the butt-welded high-temperature steel pipes, Journal of Materials Engineering and Performance 24(9) (2015) 3658-3665.
[13] F. Nový, M. Petrů, L. Trško, M. Jambor, O. Bokůvka, J. Lago, Fatigue properties of welded Strenx 700 MC HSLA steel after ultrasonic impact treatment application, Materials Today: Proceedings (2020). https://doi.org/10.1016/j.matpr.2020.04.187
[14] A. Abdullah, M. Malaki, A. Eskandari, Strength enhancement of the welded structures by ultrasonic peening, Materials & Design 38 (2012) 7-18. https://doi.org/10.1016/j.matdes.2012.01.040
[15] P.S. Prevey, X-ray diffraction residual stress techniques, ASM International, ASM Handbook. 10 (1986) 380-392.
[16] M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, L. Suominen, Determination of Residual Stresses by X-ray Diffraction, Issue 2. Measurement Good Practice Guide No: 52., The National Physical Laboratory (NPL)2005.
[17] Standard Test Method for Verifying the Alignment of X-Ray Diffraction Instrumentation for Residual Stress Measurement, 03.01, E 915, Annual Book of ASTM Standards, Philadelphia 1984, pp. 809-812.
[18] Standard Test Method for Determining the Effective Elastic Parameter for X-Ray Diffraction Measurements of Residual Stress, ASTM E1426−98, American Society for Testing And Materials, 2009, p. 5.
[19] T. Chaise, J. Li, D. Nélias, R. Kubler, S. Taheri, G. Douchet, V. Robin, P. Gilles, Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP), Journal of Materials Processing Technology 212(10) (2012) 2080-2090. https://doi.org/10.1016/j.jmatprotec.2012.05.005
[20] G.R. Johnson, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proc. 7th Inf. Sympo. Ballistics (1983) 541-547.
[21] K.G.a.L.M. Lesuer DR, Modeling largestrain, high-rate deformation in metals, Proceedings of the 3rd Biennial tri-laboratory engineering conference modeling and simulation, Lawrence Livermor National Laboratory, Pleasanton, CA,, 1999, pp. 3-5.
[22] D.C. Montgomery, Design and analysis of experiments. ed, John Wiley & Sons 52 (2001) 218-286.