[1] S. Najeeb, M. Mali, S.A.U. Yaqin, M.S. Zafar, Z. Khurshid, A. Alwadaani, J.P. Matinlinna, Dental implants materials and surface treatments, Advanced Dental Biomaterials, (2019) 581-598.
[2] M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, Implant biomaterials: A comprehensive review, World Journal of Clinical Cases: WJCC, 3(1) (2015) 52-57.
[3] J. Rebelo, A.M. Dias, D. Kremer, J. Lebrun, Influence of EDM pulse energy on the surface integrity of martensitic steels, Journal of Materials Processing Technology, 84(1-3) (1998) 90-96.
[4] V.G. Navas, I. Ferreres, J. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel, Journal of Materials Processing Technology, 195(1-3) (2008) 186-194.
[5] J. Rebelo, M. Kornmeier, A.C. Batista, A.M. Dias, Residual stress after EDM–FEM study and measurement results, in: Materials science forum, Trans Tech Publ, (2002) 159-164.
[6] M. Salahshoor, C. Li, Z. Liu, X. Fang, Y. Guo, Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing, Journal of the mechanical behavior of biomedical materials, 78 (2018) 246-253.
[7] N. El-Tayeb, K. Low, P. Brevern, Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061, Journal of materials processing technology, 186(1-3) (2007) 272-278.
[8] P. Kumara, G. Purohit, Investigations on Effect of Different Ball Burnishing Conditions on Surface Roughness Using Response Surface Methodology, Journal of Modern Manufacturing Systems and Technology, 2(1) (2019) 51-60.
[9] Y. Tian, Y.C. Shin, Laser-assisted burnishing of metals, International Journal of Machine Tools and Manufacture, 47(1) (2007) 14-22.
[10] N. Loh, S. Tam, Effects of ball burnishing parameters on surface finish—a literature survey and discussion, Precision Engineering, 10(4) (1988) 215-220.
[11] H. Yilmaz, R. Sadeler, Impact wear behavior of ball burnished 316L stainless steel, Surface and Coatings Technology, 363 (2019) 369-378.
[12] S. Attabi, A. Himour, L. Laouar, A. Motallebzadeh, Effect of Ball Burnishing on Surface Roughness and Wear of AISI 316L SS, Journal of Bio-and Tribo-Corrosion, 7(1) (2020) 1-11.
[13] N. k Patela, M.K.A. Patel, Parametric optimization of process parameter for roller burnishing process: a review, International Journal of Advanced Engineering Research and Studies, 2(2) (2013) 53-56.
[14] S. Khalilpourazary, J. Salehi, How alumina nanoparticles impact surface characteristics of Al7175 in roller burnishing process, Journal of Manufacturing Processes, 39 (2019) 1-11.
[15] B. Sachin, S. Narendranath, D. Chakradhar, Selection of optimal process parameters in sustainable diamond burnishing of 17-4 PH stainless steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5) (2019) 2-12.
[16] T.-T. Nguyen, X.-B. Le, Optimization of interior roller burnishing process for improving surface quality, Materials and Manufacturing Processes, 33(11) (2018) 1233-1241.
[17] A. Saldaña-Robles, H. Plascencia-Mora, E. Aguilera-Gómez, A. Saldaña-Robles, A. Marquez-Herrera, J.A. Diosdado-De la Peña, Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel, Surface and Coatings Technology, 339 (2018) 191-198.
[18] T.-T. Nguyen, L.-H. Cao, T.-A. Nguyen, X.-P. Dang, Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality, Journal of Cleaner Production, 245 (2020) 23-31.
[19] T.-T. Nguyen, L.-H. Cao, Optimization of the Burnishing Process for Energy Responses and Surface Properties, International Journal of Precision Engineering and Manufacturing, (2020) 1-10.
[20] S. Ramesh, S.A. Kudva, G. Anne, B. Manne, S. Arya, Optimization of ball-burnishing process parameters on surface roughness, micro hardness of Mg–Zn–Ca alloy and investigation of corrosion behavior, Materials Research Express, 6(10) (2019) 1065-1068.
[21] Q.-N. Banh, F.-J. Shiou, Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX, Arabian Journal for Science and Engineering, 41(2) (2016) 639-652.
[22] J.M. Rao, A.C.K. Reddy, P.R. Rao, Experimental investigation of the influence of burnishing tool passes on surface roughness and hardness of brass specimens, Indian Journal of Science and Technology, 4(9) (2011) 1113-1118.
[23] M.S. John, N. Banerjee, K. Shrivastava, B. Vinayagam, Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8) (2017) 3089-3101.
[24] B. Sachin, S. Narendranath, D. Chakradhar, Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool, Journal of Manufacturing Processes, 38 (2019) 564-571.
[25] J. Niu, Z. Liu, B. Wang, Y. Hua, G. Wang, Effect of machining‐induced surface integrity on the corrosion behavior of Al–Li alloy 2A97 in sodium chloride solution, Materials and Corrosion, 70(2) (2019) 259-267.
[26] L. Bousselmi, C. Fiaud, B. Tribollet, E. Triki, Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: interphase model, Electrochimica Acta, 44(24) (1999) 4357-4363.