مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تأثیر پارامترهای فرآیند برنیشینگ بر زبری سطح، میکروسختی و خوردگی فولاد ایمپلنت زنگ نزن 316L ماشین کاری شده توسط فرآیند ماشین کاری تخلیه الکتریکی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده مکانیک، برق، کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران ، ایران
2 مهندسی مکانیک، دانشکده مکانیک واحد نجف اباد، دانشگاه آزاد اسلامی، اصفهان، ایران
3 گروه مهندسی مکانیک، دانشکده مکانیک واحد تهران شمال، دانشگاه آزاد اسلامی، تهران ، ایران
چکیده
امروزه انواع ایمپلنت­ ها با کاربرد­های مختلف، جهت جایگزینی و یا حمایت از یک ساختار زیستی آسیب‌دیده مورد استفاده قرار می­گیرند که از رایج­ترین آنها می­توان به ایمپلنت های دندانی و ارتوپدی اشاره نمود. با توجه به کاربرد گسترده فولاد زنگ نزن L316 در ساخت انواع ایمپلنت ­ها و بروز ترک و تنش­ های پسماند طی استفاده از فرآیند ماشین­ کاری تخلیه الکتریکی برای تولید این محصولات، بکارگیری روش­ های پرداخت مؤثر و با صرفه اقتصادی نظیر برنیشینگ، بر افزایش خواص سطحی و سازگاری این محصولات با بافت زنده تأثیرگذار است. در این پژوهش، پس از انجام فرآیند ماشین­کاری تخلیه الکتریکی روی سطح نمونه و ساخت ابزار برنیشینگ ساچمه­ ای، عملیات برنیشینگ با تغییر پارامترهای ورودی و مطابق با آزمایش­ های طراحی شده با استفاده از نرم­ افزار مینی­ تب انجام شد و به این ترتیب، تأثیر متغیرهای نیروی برنیشینگ، سرعت پیشروی و تعداد عبور ابزار، بر خواص زبری سطح، میکروسختی و مقاومت به خوردگی سطح پایانی قطعه­ کار مورد بررسی قرار گرفت. طی بهینه­ سازی انجام شده به روش سطح­ پاسخ، مقدار بهینه برای زبری سطح، میکروسختی و نرخ خوردگی نمونه­ ها، به­ ترتیب، 0/108 میکرومتر، 435/34 ویکرز و 105×2/18 اهم، بدست آمد که در مقایسه با نمونه شاهد، زبری سطح نمونه­ ها در حدود 97% کاهش یافته و میکروسختی و مقاومت نمونه­ ها در برابر خوردگی به­ ترتیب، در حدود 2 و 11 برابر افزایش یافته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of the effect of burnishing process on the surface roughness, micro hardness and corrosion of 316 L stainless steel implant machined by the electrical discharge machining process

نویسندگان English

Mahdi Barghamadi 1
payam saraeian 2
Sadegh Rahmati 1
Ehsan Shakouri 3
1 Department of Mechanical Engineering, College of mechanic, electronic, computer, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Mechanical Engineering, College of mechanic Najafabad Branch, Islamic Azad University, Isfahan, Iran
3 Department of Mechanical Engineering, College of mechanic North Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده English

Today, a variety of implants with different applications are used to replace or support a damaged biological structure, the most common of which are dental and orthopedic implants. Due to the widespread use of stainless steel 316 L in the manufacture of implants and the occurrence of cracks and residual stresses during the process of electrical discharge machining for the production of these products, the use of effective and economical polishing methods such as burnishing in It is effective in increasing the surface properties and compatibility of these products with living tissue. In this study, after performing the electrical discharge machining process on the surface of the sample and making the ball burnishing, the burnishing operations were performed by changing the input parameters and in accordance with the experiments designed using the mini tab software. Thus, the effect of variable burnishing force, feed speed and number of tool passes on surface roughness properties, micro-hardness and corrosion resistance of the final surface of the work piece were investigated. During the optimization of the response surface methodology, the optimal value for surface roughness, micro-hardness and surface corrosion rate of the samples were obtained, respectively, 0.108 μm, 435.34 Vickers and 2.18*105 respectively. Compared to the control sample, the surface roughness of the samples decreased by about 97% and the micro-hardness and corrosion resistance of the samples increased by about 2 and 11 times, respectively.

کلیدواژه‌ها English

316 L Stainless Steel
Electerical Discharge Machining
Ball burnishing
Surface roughness
Micro hardness
Corrosion
[1] S. Najeeb, M. Mali, S.A.U. Yaqin, M.S. Zafar, Z. Khurshid, A. Alwadaani, J.P. Matinlinna, Dental implants materials and surface treatments, Advanced Dental Biomaterials, (2019) 581-598.
[2] M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, Implant biomaterials: A comprehensive review, World Journal of Clinical Cases: WJCC, 3(1) (2015) 52-57.
[3] J. Rebelo, A.M. Dias, D. Kremer, J. Lebrun, Influence of EDM pulse energy on the surface integrity of martensitic steels, Journal of Materials Processing Technology, 84(1-3) (1998) 90-96.
[4] V.G. Navas, I. Ferreres, J. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel, Journal of Materials Processing Technology, 195(1-3) (2008) 186-194.
[5] J. Rebelo, M. Kornmeier, A.C. Batista, A.M. Dias, Residual stress after EDM–FEM study and measurement results, in: Materials science forum, Trans Tech Publ, (2002) 159-164.
[6] M. Salahshoor, C. Li, Z. Liu, X. Fang, Y. Guo, Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing, Journal of the mechanical behavior of biomedical materials, 78 (2018) 246-253.
[7] N. El-Tayeb, K. Low, P. Brevern, Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061, Journal of materials processing technology, 186(1-3) (2007) 272-278.
[8] P. Kumara, G. Purohit, Investigations on Effect of Different Ball Burnishing Conditions on Surface Roughness Using Response Surface Methodology, Journal of Modern Manufacturing Systems and Technology, 2(1) (2019) 51-60.
[9] Y. Tian, Y.C. Shin, Laser-assisted burnishing of metals, International Journal of Machine Tools and Manufacture, 47(1) (2007) 14-22.
[10] N. Loh, S. Tam, Effects of ball burnishing parameters on surface finish—a literature survey and discussion, Precision Engineering, 10(4) (1988) 215-220.
[11] H. Yilmaz, R. Sadeler, Impact wear behavior of ball burnished 316L stainless steel, Surface and Coatings Technology, 363 (2019) 369-378.
[12] S. Attabi, A. Himour, L. Laouar, A. Motallebzadeh, Effect of Ball Burnishing on Surface Roughness and Wear of AISI 316L SS, Journal of Bio-and Tribo-Corrosion, 7(1) (2020) 1-11.
[13] N. k Patela, M.K.A. Patel, Parametric optimization of process parameter for roller burnishing process: a review, International Journal of Advanced Engineering Research and Studies, 2(2) (2013) 53-56.
[14] S. Khalilpourazary, J. Salehi, How alumina nanoparticles impact surface characteristics of Al7175 in roller burnishing process, Journal of Manufacturing Processes, 39 (2019) 1-11.
[15] B. Sachin, S. Narendranath, D. Chakradhar, Selection of optimal process parameters in sustainable diamond burnishing of 17-4 PH stainless steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5) (2019) 2-12.
[16] T.-T. Nguyen, X.-B. Le, Optimization of interior roller burnishing process for improving surface quality, Materials and Manufacturing Processes, 33(11) (2018) 1233-1241.
[17] A. Saldaña-Robles, H. Plascencia-Mora, E. Aguilera-Gómez, A. Saldaña-Robles, A. Marquez-Herrera, J.A. Diosdado-De la Peña, Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel, Surface and Coatings Technology, 339 (2018) 191-198.
[18] T.-T. Nguyen, L.-H. Cao, T.-A. Nguyen, X.-P. Dang, Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality, Journal of Cleaner Production, 245 (2020) 23-31.
[19] T.-T. Nguyen, L.-H. Cao, Optimization of the Burnishing Process for Energy Responses and Surface Properties, International Journal of Precision Engineering and Manufacturing, (2020) 1-10.
[20] S. Ramesh, S.A. Kudva, G. Anne, B. Manne, S. Arya, Optimization of ball-burnishing process parameters on surface roughness, micro hardness of Mg–Zn–Ca alloy and investigation of corrosion behavior, Materials Research Express, 6(10) (2019) 1065-1068.
[21] Q.-N. Banh, F.-J. Shiou, Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX, Arabian Journal for Science and Engineering, 41(2) (2016) 639-652.
[22] J.M. Rao, A.C.K. Reddy, P.R. Rao, Experimental investigation of the influence of burnishing tool passes on surface roughness and hardness of brass specimens, Indian Journal of Science and Technology, 4(9) (2011) 1113-1118.
[23] M.S. John, N. Banerjee, K. Shrivastava, B. Vinayagam, Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8) (2017) 3089-3101.
[24] B. Sachin, S. Narendranath, D. Chakradhar, Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool, Journal of Manufacturing Processes, 38 (2019) 564-571.
[25] J. Niu, Z. Liu, B. Wang, Y. Hua, G. Wang, Effect of machining‐induced surface integrity on the corrosion behavior of Al–Li alloy 2A97 in sodium chloride solution, Materials and Corrosion, 70(2) (2019) 259-267.
[26] L. Bousselmi, C. Fiaud, B. Tribollet, E. Triki, Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: interphase model, Electrochimica Acta, 44(24) (1999) 4357-4363.