مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی و تجربی تأثیر احداث بزرگراه امیرکبیر (55 متری) در شهر اراک بر میزان کاهش آلودگی هوا

نویسندگان
دانشگاه اراک
چکیده
اراک در رتبه ۷۱ آلوده‌ترین شهرهای جهان قرار دارد. هوای اراک ازنظر داشتن عوامل آلوده‌کننده از پایتخت ایران آلوده‌تر است. ورود حجم زیادی از آلودگی‌ها به این شهر نشان می‌دهد که درصد بالایی از آلودگی در شهری با وسعت کم متمرکزشده است و این حجم از آلودگی هم برای انسان و هم برای محیط‌زیست بسیار خطرناک است. به‌منظور کاهش آلودگی هوای شهر، دولت ایران در سال 2007 طرحی با نام طرح جامع کاهش آلودگی هوای اراک را تصویب کرد. در این طرح جامع، احداث بزرگراهی به نام امیرکبیر (55 متری) تصویب شده است که شرق و غرب اراک را به هم متصل می نماید. در این مقاله به صورت عددی و تجربی، تأثیر احداث این بزرگراه بر میزان کاهش آلایندگی هوای شهر اراک بررسی شده است. در قسمت نتایج، جزئیات تغییرات میزان آلودگی هوا در شهر اراک قبل و بعد از احداث این بزرگراه مقایسه شده است. نتایج بیانگر آن است که برای آلاینده ناکس 2.75 درصد کاهش، برای مونو اکسید کربن 4 درصد کاهش مشاهده شده است و برای دی اکسید گوگرد بدون تغییر حاصل شده است. در نتیجه اجرای این طرح با هزینه های تاسیس بسیار زیاد، تأثیر زیاد و قابل ملاحظه ای برای بهبود آلایندگی هوا در سطح شهر اراک را به همراه نخواهد داشت.
کلیدواژه‌ها

عنوان مقاله English

Numerical and experimental study of the effect of construction of Amirkabir highway (55 meters) in Arak city on air pollution reduction

نویسندگان English

Seyed alireza Mostafavi
Hamed Safikhani
ali karimi
siavash salahfard
araku
چکیده English

Arak is ranked 71st in the worldchr('39')s most polluted cities. Arakchr('39')s air is more polluted than the Iranian capital in terms of pollutants. The influx of large amounts of pollution into the city shows that a high percentage of pollution is concentrated in a small town, and this volume of pollution is very dangerous for both humans and the environment. In order to reduce air pollution in the city, the Iranian government in 2007 approved a plan called the comprehensive plan to reduce air pollution in Arak. In this comprehensive plan, the construction of a highway called Amirkabir (58 meters) has been approved, which connects the east and west of Arak. In this article, numerically and experimentally, the effect of constructing this highway on the reduction of air pollution in Arak city has been investigated. In the results section, the details of changes in air pollution in Arak city before and after the construction of this highway have been compared. The results show that a 2.75 percent decrease is observed for Nox pollutants, 4 percent decrease is observed for Co, and a change is obtained for So2. As a result, the implementation of this project at a very high cost will not have a significant impact on improving air pollution in the city of Arak.

کلیدواژه‌ها English

Air pollution
Arak
Amirkabir highway
NOX
Co
SO2
[1] Taksibi F, Khajehpour H, Saboohi Y. On the environmental effectiveness analysis of energy policies: A case study of air pollution in the megacity of Tehran. Science of The Total Environment. 2020 Feb 25;705:135824. [Persian].
[2] Air pollution [Internet]. Who.int. 2020 [cited 9 June 2020]. Available from: https://www.who.int/health-topics/air-pollution#tab=tab_1
[3] Pinto JA, Kumar P, Alonso MF, Andreão WL, Pedruzzi R, dos Santos FS, Moreira DM, de Almeida Albuquerque TT. Traffic data in air quality modeling: a review of key variables, improvements in results, open problems and challenges in current research. Atmospheric Pollution Research. 2020 Mar 1;11(3):454-68.
[4] Torrente-Velásquez JM, Giampietro M, Ripa M, Chifari R. Landfill reactions to society actions: The case of local and global air pollutants of Cerro Patacón in Panama. Science of The Total Environment. 2020 Mar 1;706:135988.
[5] Tayarani M, Rowangould G. Estimating exposure to fine particulate matter emissions from vehicle traffic: Exposure misclassification and daily activity patterns in a large, sprawling region. Environmental Research. 2020 Mar 1;182:108999.
[6] Ghanbari Fard,R ., Safavi, A., Setoodeh, P. The traffic flow effect modeling on the air pollution of Shiraz city. Journal of Environmental Sciences Research Institute.2017 ;15(1): 157-174. [Persian].
[7] Nourpour, A., Shahabi, N. Dispersion Modeling of Air Pollutants from the Ilam Cement Factory Stack. Journal of Civil and Environmental Enginering.2014; 1(44):107-116 [Persian].
[8] Ramavandi, B., Ahmadi Moghaddam, M., Shah Heidar, N., Bighami, M. Estimation of volatile organic compounds emissions from the fuel storage tanks using TANKS model and its distribution modeling by AERMOD model. Journal of Sabzevar University of Medical Sciences. 2016; 23(2), 253-261. [Persian].
[9] Atabi F, Jafarigol F, Momeni M, Salimian M, Bahmannia G. Dispersion modeling of CO with AERMOD in South Pars fourth gas refinery. Journal of Environmental Health Enginering. 2014;1(4):281-92. [Persian].
[10] Moemeni,I ., Danehkar, A., Karimi, S. Dispersion modelling of SO2 pollution Emitted from Ramin Ahwaz power plant using AERMOD model. Journal of Iran Society Of Environmentalists. 2011; 9(3): 3-8. [Persian].
[11] Abbasi Chaleshtori L, Nejadkoorki F. Ashrafi K. Performance of AERMOD Under Different Building Forms and Dimensions. Environmental Sciences.2015 Apr; 13(1):15-24.
. 2011; 9(3), 3-8. [Persian].
[12] Hall DJ, Spanton AM, Dunkerley F, Bennett M, Griffiths RF. An intercomparison of the AERMOD, ADMS and ISC dispersion models for regulatory applications. In7th international conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2001 (pp. 47-51). Joint Research Centre, Environment Institute.
[13] Mbiaké R, Mfoumou E, Wakata AB, Ndjeuna E, Djamen JK, Leduc R, Bobda C. Atmospheric Dispersion Modeling of the Emissions from the Logbaba Thermal Power Plant, Douala-Cameroon. Open Journal of Air Pollution. 2017 Nov 9;6(4):117-34.
[14] Rahmanian M, Sedighi K, Aminirad H. Investigating the Gaussian Model in Air Pollution Distribution Modeling Using Geographic Information System. Sixth National Congress of Civil Engineering.2011 May. [Persian].
[15] Bady M. Fundamentals of direct inverse CFD modeling to detect air pollution sources in urban areas.
[16] Peel JL, Haeuber R, Garcia V, Russell AG, Neas L. Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry. 2013 Jul 1;114(1-3):121-34.
[17] Kampa M, Castanas E. Human health effects of air pollution. Environmental pollution. 2008 Jan 1;151(2):362-7.
[18] Pandey JS, Kumar R, Devotta S. Health risks of NO2, SPM and SO2 in Delhi (India). Atmospheric Environment. 2005 Nov 1;39(36):6868-74.

[19] Damuchali AM, Guo H. Developing an odour emission factor for an oil refinery plant using reverse dispersion modeling. Atmospheric Environment. 2020 Feb 1;222:117167.

[20] de Ferreyro Monticelli D, Santos JM, Dourado HO, Moreira DM, Reis Jr NC. Assessing particle dry deposition in an urban environment by using dispersion models. Atmospheric Pollution Research. 2020 Jan 1;11(1):1-0.
[21] Dunkerley F, Spanton AM, Hall DJ, Bennett M, Griffiths RF. An intercomparison of the AERMOD, ADMS and ISC dispersion models for regulatory applications: Dispersion over terrain. In7th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. HARMO7. 28-31 May, Belgirate, Italy 2001 May.

[22] Mbiaké R, Mfoumou E, Wakata AB, Ndjeuna E, Djamen JK, Leduc R, Bobda C. Atmospheric Dispersion Modeling of the Emissions from the Logbaba Thermal Power Plant, Douala-Cameroon. Open Journal of Air Pollution. 2017 Nov 9;6(4):117-34.
[23] Torrente-Velásquez JM, Giampietro M, Ripa M, Chifari R. Landfill reactions to society actions: The case of local and global air pollutants of Cerro Patacón in Panama. Science of The Total Environment. 2020 Mar 1;706:135988.
[24] Valencia VH, Hertel O, Ketzel M, Levin G. Modeling urban background air pollution in Quito, Ecuador. Atmospheric Pollution Research. 2020 Apr 1;11(4):646-66.
[25] Arak, Iran [Internet]. En.wikipedia.org. 2020 [cited 9 June 2020]. Available from: https://en.wikipedia.org/wiki/Arak,_Iran