S.K. Lee, P. Manovski, C. Kumar, Wake of a DST Submarine Model captured by Stereoscopic Particle Image Velocimetry, Laser. 50 (2018) 60–65.
S.-K. Lee, P. Manovski, C. Kumar, Wake of a cruciform appendage on a generic submarine at 10° yaw, J. Mar. Sci. Technol. (2019) 1–13.
D. Feng, X. Wang, F. Jiang, Z. Zhang, Large Eddy Simulation of DARPA SUBOFF for Re= 2.65× 107, J. Coast. Res. 73 (2015) 687–692.
C. Fureby, B. Anderson, D. Clarke, L. Erm, S. Henbest, M. Giacobello, D. Jones, M. Nguyen, M. Johansson, M. Jones, Experimental and numerical study of a generic conventional submarine at 10 yaw, Ocean Eng. 116 (2016) 1–20.
C. Fureby, D. Norrison, RANS, DES and LES of the Flow Past the 6: 1 Prolate Spheroid at 10 and 20 Angle of Incidence, in: AIAA Scitech 2019 Forum, 2019: p. 85.
A. Posa, E. Balaras, A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution, J. Fluid Mech. 884 (2020).
Z. Rao, C. Yang, Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation, J. Hydrodyn. 29 (2017) 691–701.
P. Manovski, M.B. Jones, S.M. Henbest, Y. Xue, M. Giacobello, C. de Silva, Boundary layer measurements over a body of revolution using long-distance particle image velocimetry, Int. J. Heat Fluid Flow. 83 (2020) 108591.
D. Zhou, K. Wang, M. Wang, Large-Eddy Simulation of an Axisymmetric Boundary Layer on a Body of Revolution, in: AIAA Aviat. 2020 Forum, 2020: p. 2989.
M.D. Manshadi, S. Esfandeh, A.A. Dehghan, A. Saeidinezhad, Experimental investigation of the wake of a submarine model by five-hole probe in a wind tunnel., Modares Mech. Eng. 15 (2015).
J. Zhang, F. Zhao, F. Hong, J. Xu, Towing PIV and its application on the juncture forms of stern appendage with main-body, in: Opt. Technol. Image Process. Fluids Solids Diagnostics 2002, International Society for Optics and Photonics, 2003: pp. 208–213.
E.F. Van Randwijck, J.P. Feldman, Results of Experiments with a Segmented Model to Investigate the Distribution of the Hydrodynamic Forces and Moments on a Streamlined Body of Revolution at an Angle of Attack or with a Pitching Angular Velocity, Naval Surface Warfare Center Carderock Div Bethesda Md Hydromechanics …, 2000.
M. Javadi, M.D. Manshadi, S. Kheradmand, M. Moonesun, Experimental investigation of the effect of bow profiles on resistance of an underwater vehicle in free surface motion, J. Mar. Sci. Appl. 14 (2015) 53–60. https://doi.org/10.1007/s11804-015-1283-0.
J.-Y. Park, N. Kim, Y. Shin, Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine, Int. J. Nav. Archit. Ocean Eng. 9 (2017) 100–113. https://doi.org/10.1016/j.ijnaoe.2016.08.003.
S. Huang, T., Liu, H.L., Groves, N., Forlini, T., Blanton, J. and Gowing, Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program, in: Ninet. Symp. Nav. Hydrodyn., Seoul, Korea, 1992.
S. Huang, T., Liu, H.L., Groves, N., Forlini, T., Blanton, J. and Gowing, H.L. Liu, Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program, (1994).
H. Kim, D. Ranmuthugala, Z.Q. Leong, C. Chin, Six-DOF simulations of an underwater vehicle undergoing straight line and steady turning manoeuvres, Ocean Eng. 150 (2018) 102–112.
J.M. Jiménez, M. Hultmark, A.J. Smits, The intermediate wake of a body of revolution at high Reynolds numbers, J. Fluid Mech. 659 (2010) 516–539. https://doi.org/10.1017/S0022112010002715.
J.M. Jiménez, R.T. Reynolds, A.J. Smits, J.M. JimÊnez, R.T. Reynolds, A.J. Smits, The effects of fins on the intermediate wake of a submarine model, J. Fluids Eng. 132 (2010) 31102. https://doi.org/10.1115/1.4001010.
A. Ashok, A.J. Smits, The turbulent wake of a submarine model in pitch and yaw, in: TSFP Digit. Libr. Online, Begel House Inc., 2013: pp. 1–6.
Z. Liu, Y. Xiong, Z. Wang, W. Song, C. Tu, Numerical simulation and experimental study of the new method of horseshoe vortex control, J. Hydrodyn. Ser. B. 22 (2010) 572–581.
A.R. Paul, R.R. Upadhyay, A. Jain, A novel calibration algorithm for five-hole pressure probe, Int. J. Eng. Sci. Technol. 3 (2011) 89–95.
A.L. Treaster, A.M. Yocum, The calibration and application of five-hole probes, PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESEARCH LAB, 1978.
N. Sitaram, K. Srikanth, Effect of chamfer angle on the calibration curves of five hole probes, Int. J. Rotating Mach. 2014 (2014).
S. Karahan, A.T. Kutay, Calibration of Five-Hole Probe with Redundant Coefficients, in: 31st AIAA Aerodyn. Meas. Technol. Gr. Test. Conf., 2015: p. 3381.
A.M. Young, R.U.G. Guion, N.R.N. Atkins, J. Costan, Novel usage of five-hole probes: Tidal channel turbulence measurements, (2016) 1–8.
J. Town, C. Camci, A Time Efficient Adaptive Gridding Approach and Improved Calibrations in Five-Hole Probe Measurements, Int. J. Rotating Mach. 2015 (2015).
H. Wang, W. Zeng, Q. Zhang, F.P. Probe, Development of an omnidirectional five-hole pressure probe, AIAA J. 54 (2016) 2190–2193. https://doi.org/10.2514/1.J054611.
S.D. Grimshaw, J. V Taylor, Fast settling millimetre-scale five-hole probes, in: ASME Turbo Expo 2016 Turbomach. Tech. Conf. Expo., American Society of Mechanical Engineers Digital Collection, 2016: pp. 1–13.
K.I. Magkoutas, T.G. Efstathiadis, A.I. Kalfas, Experimental Investigation of Geometry Effects and Performance of Five-Hole Probe in Measuring Jets in Crossflow, in: XXII Biannu. Symp. Meas. Tech. Turbomach. Transonic Supersonic Flow Cascades Turbomachines, 2016: pp. 1–9.
B.F. Hall, T. Povey, The Oxford Probe: an open access five-hole probe for aerodynamic measurements, Meas. Sci. Technol. 28 (2017) 35004. https://doi.org/10.1088/1361-6501/aa53a8.
C.W. Lum, N. Sandhu, J.M. Diebold, B.S. Woodard, M.B. Bragg, The Application of a Five-Hole Probe Wake-Survey Technique to the Study of Swept Wing Icing Aerodynamics, in: 9th AIAA Atmos. Sp. Environ. Conf., 2017: p. 4374.
N.C. Groves, T.T. Huang, M.S. Chang, Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471), David Taylor Research Center Bethesda MD Ship Hydromechanics Dept, 1989.
A. Saeidinezhad, A.A. Dehghan, M.D. Manshadi, Experimental investigation of hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver, Ocean Eng. 100 (2015) 26–34. https://doi.org/10.1016/j.oceaneng.2015.03.010.
K. Takahashi, P.K. Sahoo, Numerical Study On The Hydrodynamic Performance Of The Darpa Suboff Submarine For Steady Translation, J. Mar. Sci. Appl. 19 (2020) 41–52. https://doi.org/10.1007/s11804-020-00130-w.