1. Saeid AA, Donaldson SL. Experimental and finite element evaluations of debonding in composite sandwich structure with core thickness variations. Adv Mech Eng. 2016 Sep 1;8(9):1687814016667418.
2. Yoshida K, Uchida K, Nishita Y, Hirose Y, Kuraishi A. Suppression of initial failure at tapered end-closure sandwich panel joint by taper angle change. Adv Compos Mater [Internet]. 2017;26(4):375–90. Available from: http://dx.doi.org/10.1080/09243046.2016.1266433
3. Shir Mohammadi M, Nairn JA. Balsa sandwich composite fracture study: Comparison of laminated to solid balsa core materials and debonding from thick balsa core materials. Compos Part B Eng [Internet]. 2017;122:165–72. Available from: http://dx.doi.org/10.1016/j.compositesb.2017.04.018
4. Shivakumar K, Chen H, Smith SA. An evaluation of data reduction methods for opening mode fracture toughness of sandwich panels. J Sandw Struct Mater. 2005;7(1):77–90.
5. Avilés F, Carlsson LA. Analysis of the sandwich DCB specimen for debond characterization. Eng Fract Mech. 2008;75(2):153–68.
6. Ramantani DA, de Moura MFSF, Campilho RDSG, Marques AT. Fracture characterization of sandwich structures interfaces under mode I loading. Compos Sci Technol. 2010;70(9):1386–94.
7. م. خوشروان آذر، ف. پور اسماعیل، “بررسی عددی رشد ترک و جدایی پوسته از هسته در سازه های ساندویچی،” همایش سالانه بینالمللی مهندسی مکانیک ایران، 1389.
8. Bianchi F, Zhang X. A cohesive zone model for predicting delamination suppression in z-pinned laminates. Compos Sci Technol [Internet]. 2011;71(16):1898–907. Available from: http://dx.doi.org/10.1016/j.compscitech.2011.09.004
9. Davidson P, Waas AM, Yerramalli CS. Experimental determination of validated, critical interfacial modes I and II energy release rates in a composite sandwich panel. Compos Struct. 2012;94(2):477–83.
10. De Morais AB. Mode I cohesive zone model for delamination in composite beams. Eng Fract Mech [Internet]. 2013;109:236–45. Available from: http://dx.doi.org/10.1016/j.engfracmech.2013.07.004
11. Xu G, Yan R. The Use of Sprint Interface Element Delamination Simulation of Sandwich Composite Beam. Appl Compos Mater [Internet]. 2017;24(5):1049–60. Available from: http://dx.doi.org/10.1007/s10443-016-9574-4
12. Höwer D, Lerch BA, Bednarcyk BA, Pineda EJ, Reese S, Simon JW. Cohesive zone modeling for mode I facesheet to core delamination of sandwich panels accounting for fiber bridging. Compos Struct. 2018;183(1):568–81.
13. Yoshida K, Aoki T. Beam on elastic foundation analysis of sandwich SCB specimen for debond fracture characterization. Compos Struct. 2018;195:83–92.
14. Ahmed A, Fahim A, Naguib HE. Design of new hybrid composites using metal embedded in polymer foam and foam composite. J Compos Mater. 2009;43(15):1603–19.
15. Hirose Y, Matsuda H, Matsubara G, Inamura F, Hojo M. Evaluation of New Crack Suppression Method for Foam Core Sandwich Panel Via Fracture Toughness Tests and Analyses Under Mode-I Type Loading. J Sandw Struct Mater. 2009;11(6):451–70.
16. Stewart JK, Mahfuz H, Carlsson LA. Enhancing mechanical and fracture properties of sandwich composites using nanoparticle reinforcement. J Mater Sci. 2010;45(13):3490–6.
17. May-Pat A, Avilés F, Aguilar J. Mechanical properties of sandwich panels with perforated foam cores. J Sandw Struct Mater. 2011;13(4):427–44.
18. Halimi F, Golzar M, Asadi P, Beheshty MH. Core modifications of sandwich panels fabricated by vacuum-assisted resin transfer molding. J Compos Mater [Internet]. 2012 Jul 4;47(15):1853–63. Available from: https://doi.org/10.1177/0021998312451763
19. Hirose Y, Matsuda H, Matsubara G, Hojo M, Yoshida K, Inamura F. Experimental evaluation of splice-type crack arrester with a filler under mode-I type loading. Compos Struct [Internet]. 2013;100:300–6. Available from: http://www.sciencedirect.com/science/article/pii/S0263822313000305
20. Yokozeki T, Iwamoto K. Effects of core machining configuration on the debonding toughness of foam core sandwich panels. Adv Compos Mater. 2016;25(1):45–58.
21. Selwyn Jebadurai D, Razal Rose A, Aatthisugan I. A Novel Approach to Enhance Mechanical Characteristics of Sandwich Composites. Mater Today Proc [Internet]. 2020;24:618–27. Available from: http://www.sciencedirect.com/science/article/pii/S2214785320329382
22. Carlsson LA, Kardomateas GA. Structural and Failure Mechanics of Sandwich Composites. Springer Netherlands; 2011. (Solid Mechanics and Its Applications).
23. Erdogan F. Fracture mechanics. Int J Solids Struct. 2000 Jan 1;37(1–2):171–83.
24. Irwin GR, Kies JA. Critical energy rate analysis of fracture strength. Weld J. 1954;33(4):193–8.
25. ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites [Internet]. West Conshohocken, PA; 2013. Available from: www.astm.org
26. ASTM D3039 / D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials [Internet]. West Conshohocken, PA; 2017. Available from: www.astm.org
27. MatWeb. LAST-A-FOAM® FR-7109 Polyurethane Foam [Internet]. General Plastics Manufacturing Company. Available from: http://www.matweb.com/search/DataSheet.aspx?MatGUID=73a2cae19d794e41ab4aad2c77c08fa1&ckck=1
28. Jiang H. Cohesive zone model for carbon nanotube adhesive simulation and fracture/fatigue crack growth. University of Akron; 2010.