مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و ساخت مچ‌پای هوشمند فعال برای راه رفتن و دویدن از طریق بهینه‌سازی مصرف انرژی و توان

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تهران
چکیده
حرکت مچ­پای انسان نتیجه تعامل پیچیده بین عصب و ماهیچه­ها است. به منظور ایجاد عملکردی مشابه عملکرد عضو واقعی، پروتزهای مچ­پای زیادی(غیرفعال، نیمه­فعال، فعال) طراحی شده­اند. اگر از پروتزهای غیرفعال و نیمه فعال که تأمین توان خالصی ندارند و عملکردی متفاوت از عضو واقعی دارند بگذریم، بزرگترین چالش پیش­رو در پروتزهای فعال، تأمین توان و انرژی موردنیاز به­منظور ایجاد رفتاری مشابه رفتار مچ­پای سالم است. تأمین مستقیم این توان و انرژی، نیاز به محرک با گشتاور و توان بالا دارد که باعث افزایش شدید وزن و اندازه پروتز می­شود. در این مقاله به منظور کاهش این انرژی و توان مورد نیاز، از طراحی جدید و متفاوتی به صورت ترکیب محرک غیر فعال (فنر) و محرک فعال (موتور) استفاده می شود که وزن موتور موردنیاز را به­شدت کاهش می­دهد و علاوه بر مد راه­رفتن قادر به پشتیبانی از مد دویدن تا سرعت ۲.۵ متر بر ثانیه نیز است. مرحله اول این مقاله شامل مدل­سازی مکانیکی مچ­پا و بررسی کارایی و مصرف توان و انرژی در تمامی مدل­های ارائه­ شده می­باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and Manufacture of an Intelligent Prosthetic Ankle-foot for Walking and Running Modes via Optimization of Power and Energy Consumption

نویسندگان English

Farhad Rajaei
Khalil Alipour
Bahram Tarvirdizadeh
Alireza Hadi
Hossein Valiyanholagh
Advanced service robots (ASR) laboratory, Department of Mechatronics, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده English

Human ankle-foot gait is the result of a complex interaction between nerves and muscles. A significant number of prosthetic ankle-foots (passive, semi-active, active) have been designed to restore an identical function of a real limb. Excluding passive and semi-active prosthesis who couldn’t generate any positive work, one of the biggest challenges in creating these prostheses is providing the needed power and energy during movement. Supplying this power and energy, requires a high-torque and high-power actuator having high weight, thereby causing a dramatic increase in the weight and size of that prostheses. In this paper, a combination of an active actuator (an electrical motor) and an passive stimulus (a spring) is utilized, which decrease the needed power and energy, and in addition to walking mode can also support running mode up to 2.5m/s. Accordingly, The first stage of this article includes mechanical modeling of the ankle and evaluation of efficiency and power consumption in all presented models. Then the structure of Series Elastic Actuator differed with the previous structures is selected as the best combination. In this opted structure, power and energy consumption is dramatically declined up to 58% and 26% in walking mode and 64% and 57% in running mode. Consequently, a lighter motor and battery can supply the required power, so the prosthesis chr('39')s weight is subtracted.

کلیدواژه‌ها English

Disabled People
Rehabilitation Robots
Prosthetic Ankle-Foot
Ankle Mechanical Model
Optimization of Power and Energy
[1] Siciliano, Bruno, and Oussama Khatib, eds. Springer handbook of robotics. Springer, 2016.
[2] W. Meng, Q. Liu, Z. Zhou, Q. Ai, B. Sheng, and S. S. Xie, "Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation," Mechatronics, vol. 31, pp. 132-145, 2015.
[3] L.R. Palmer, Sagittal plane characterization of normal human ankle function across a range of walking gait speeds, Master’s thesis, Department of Mechanical Engineering, MIT, 2002.
[4] D.H. Gates, Characterizing ankle function during stair ascent, decent, and level wallking for ankle prosthesis and orthosis design, Master’s thesis, College of Engineering, Boston University, 2004.
[5] Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state of the art. IEEE Transactions on Robotics 2008;24(1):144–58.
[6] M. Grimmer and A. Seyfarth, "Mimicking human-like leg function in prosthetic limbs," in Neuro-Robotics, ed: Springer, 2014, pp. 105-155.
[7] Robinson, David W., et al. "Series elastic actuator development for a biomimetic walking robot." 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399). IEEE, 1999.
[8] Pratt, Jerry E., et al. "The RoboKnee: an exoskeleton for enhancing strength and endurance during walking." IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004. Vol. 3. IEEE, 2004.
[9] Blaya, Joaquin A., and Hugh Herr. "Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait." IEEE Transactions on neural systems and rehabilitation engineering 12.1 (2004): 24-31.
[10] Hollander KW, Ilg R, Sugar TG, Herring D. An efficient robotic tendon for gait assistance. Journal of Biomechanical Engineering 2006;128(5):788–91.
[11] Hitt JK, Bellman R, Holgate M, Sugar TG, Hollander KW. The SPARKy (Spring Ankle with Regenerative Kinetics) project: design and analysis of a robotic transtibial prosthesis with regenerative kinetics. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007. 2007. p. 1587–96.
[12] Oymagil AM, Hitt JK, Sugar T, Fleeger J. Control of a regenerative braking powered ankle foot orthosis. In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics. 2007. p. 28–34.
[13] Hitt J, Oymagil AM, Sugar T, Hollander K, Boehler A, Fleeger J. Dynamically controlled ankle–foot orthosis (DCO) with regenerative kinetics: incrementally attaining user portability. In: Proceedings of the 2007 IEEE 10th International Conference on Robotics and Automation. 2007. p. 1541–6.
[14] Versluys R, Desomer A, Lenaerts G, Beyl P, Van Damme M, Vanderborght B, et al. From conventional prosthetic feet to bionic feet: a review study. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008. p. 49–54.
[15] P. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, and D. Lefeber, "Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 138-148, 2013.
[16] Gao, Fei, Yannan Liu, and Wei-Hsin Liao. "Design of powered ankle-foot prosthesis with nonlinear parallel spring mechanism." Journal of Mechanical Design 140.5 (2018).
[17] Masum, Habib, Subhasis Bhaumik, and Ranjit Ray. "Conceptual design of a powered ankle-foot prosthesis for walking with inversion and eversion." Procedia Technology 14 (2014): 228-235.
[18] Shepherd, Max K., and Elliott J. Rouse. "Design of a quasi-passive ankle-foot prosthesis with biomimetic, variable stiffness." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.
[19] Ficanha, Evandro Maicon, et al. "Design and preliminary evaluation of a two dofs cable-driven ankle–foot prosthesis with active dorsiflexion–plantarflexion and inversion–eversion." Frontiers in bioengineering and biotechnology 4 (2016): 36.
[20] Ruina, Andy, John EA Bertram, and Manoj Srinivasan. "A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition." Journal of theoretical biology 237.2 (2005): 170-192.
[21] M. Grimmer and A. Seyfarth, "Stiffness adjustment of a Series Elastic Actuator in an ankle-foot prosthesis for walking and running: The trade-off between energy and peak power optimization," 2011 IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 1439-1444, doi: 10.1109/ICRA.2011.5980183.
[22] A. Mai and S. Commuri, "Intelligent control of a prosthetic ankle joint using gait recognition," Control Engineering Practice, vol. 49, pp. 1-13, 2016.
[23] K Postema, HJ Hermens, J De Vries, HFJM Koopman, and WH Eisma. Energy storage and release of prosthetic feet part 1: Biomechanical analysis related to user benefits. Prosthetics and Orthotics International, 21(1):17-27, 1997.
[24] https://www.ossur.com
[25] W.K. Durfee and K.I. Palmer. Estimation of force-activation, force-length, and force-velocity properties in isolated electrically stimulated muscle. IEEE Trans. on Biomedical Eng., 41: 205-216, 1994.
[26] G.A. Pratt and M.M. Williamson. Series elastic actuators. In Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, volume 1, pages 399-406. IEEE, 2002. ISBN 0818671084
[27] Eslamy, Mahdy, et al. "Does it pay to have a damper in a powered ankle prosthesis? a power-energy perspective." 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE, 2013.
[28] https://www.tu-darmstadt.de
[29] Aspelin, Karen, and Nick Carey. "Establishing pedestrian walking speeds." Portland State University (2005): 5-25.