1- Saito Y. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater. 1998;39(9):1221-7.
2- Fattah-Alhosseini A, Naseri M, Alemi M. Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. J Manuf Process. 2016;22:120-6.
3- Duan J, Quadir MZ, Ferry M. Engineering low intensity planar textures in commercial purity nickel sheets by cross roll bonding. Mater Lett. 2017;188:138-41.
4- اسلامی ا, حسینی س, کازرونی ا. بررسی و مقایسه خواص مکانیکی مس خالص تولید شده به دو روش اتصال نورد تجمعی(ARB) و آهنگری چند محوره (MAF). مهندسی متالورژی. 1394;18(57):54-62.
5- Zeng L, Gao R, Fang Q, Wang X, Xie Z, Miao S, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016;110:341-51.
6- اسلامی ا, بلالی م, سیدکاشی س. مطالعه و مقایسه روشهای اکستروژن برشی ساده و اتصال نورد تجمعی در بهبود خواص مکانیکی و ساختاری مس. مهندسی متالورژی. 1397;21(2):118-28.
7- Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47(2):579-83.
8- Dehghan M, Qods F, Gerdooei M, Mohammadian-Semnani H. Comparative Study of the Planar Uniformity of the Mechanical Properties of the AA1050 Strips Processed by Conventional and Cross Accumulative Roll-Bonding Techniques. JOM. 2020;72:1571-9.
9- Sinmazçelik T, Avcu E, Bora MÖ, Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Mater Des. 2011;32(7):3671-85.
10- Vogelesang LB, Vlot A. Development of fibre metal laminates for advanced aerospace structures. J Mater Process Technol. 2000;103(1):1-5.
11- Reddy MS, Chetty SV, Premkumar S, Reddappa H. Influence of reinforcements and heat treatment on mechanical and wear properties of Al 7075 based hybrid composites. Procedia Mater Sci. 2014;5:508-16.
12- Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res. 2006;9(3):247-56.
13- Rajkumar G, Krishna M, Narasimhamurthy H, Keshavamurthy Y, Nataraj J. Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates. Procedia Mater Sci. 2014;5:60-8.
14- Soltani P, Keikhosravy M, Oskouei R, Soutis C. Studying the tensile behaviour of GLARE laminates: a finite element modelling approach. Appl Compos Mater. 2011;18(4):271-82.
15- Gonzalez-Canche N, Flores-Johnson E, Carrillo J. Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene. Compos Struct. 2017;172:259-66.
16- Reyes G, Gupta S. Manufacturing and mechanical properties of thermoplastic hybrid laminates based on DP500 steel. Composites, Part A. 2009;40(2):176-83.
17- Sadighi M, Dariushi S. An experimental study of the fibre orientation and laminate sequencing effects on mechanical properties of Glare. Proc Inst Mech Eng, Part G. 2008;222(7):1015-24.
18- Wu G, Yang J-M. The mechanical behavior of GLARE laminates for aircraft structures. JOM. 2005;57(1):72-9.
19- Dhar Malingam S, Jumaat FA, Ng LF, Subramaniam K, Ab Ghani AF. Tensile and impact properties of cost‐effective hybrid fiber metal laminate sandwich structures. Adv Polym Technol. 2018;37(7):2385-93.
20- Yeh P-C, Chang P-Y, Yang J-M, Wu PH, Liu MC. Blunt notch strength of hybrid boron/glass/aluminum fiber metal laminates. Mater Sci Eng, A. 2011;528(4-5):2164-73.
21- Woo S-C, Choi N-S, Chang Y-W. Toughness and fracture mechanisms of glass fiber/aluminum hybrid laminates under tensile loading. J Mech Sci Technol. 2007;21(12):1937.
22- Wu G, Yang J-M. Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates. Modell Simul Mater Sci Eng. 2005;13(3):413.
23- Cortes P, Cantwell W. The fracture properties of a fibre–metal laminate based on magnesium alloy. Composites, Part B. 2005;37(2-3):163-70.
24- Kashfi M, Majzoobi G, Bonora N, Iannitti G, Ruggiero A, Khademi E. A study on fiber metal laminates by using a new damage model for composite layer. Int J Mech Sci. 2017;131:75-80.
25- Reyes G, Cantwell W. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Compos Sci Technol. 2000;60(7):1085-94.
26- Sharma AP, Khan SH, Parameswaran V. Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates. Composites, Part B. 2017;125:259-74.
27- Sun J, Daliri A, Lu G, Ruan D, Lv Y. Tensile failure of fibre-metal-laminates made of titanium and carbon-fibre/epoxy laminates. Mater Des. 2019;183:108139.
28- Kazeminezhad M, Taheri AK. Deformation inhomogeneity in flattened copper wire. Mater Des. 2007;28(7):2047-53.
29- Dehghan M, Qods F, Gerdooei M, Mohammadian-Semnani H. Influence of Intermediate Heating in Cross Accumulative Roll-Bonding Process on Planar Isotropy of the Mechanical Properties of Commercial Purity Aluminium Sheet. Met Mater Int. 2020:1-15.
30- Kolahi A, Akbarzadeh A, Barnett M. Electron back scattered diffraction (EBSD) characterization of warm rolled and accumulative roll bonding (ARB) processed ferrite. J Mater Process Technol. 2009;209(3):1436-44.
31- Hosseini SA, Manesh HD. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process. Mater Des. 2009;30(8):2911-8.
32- Alizadeh M, Salahinejad E. Processing of ultrafine-grained aluminum by cross accumulative roll-bonding. Mater Sci Eng, A. 2014;595:131-4.
33- Abbasi M, Sajjadi SA. Mechanical properties and interface evaluation of Al/AZ31 multilayer composites produced by ARB at different rolling temperatures. J Mater Eng Perform. 2018;27(7):3508-20.
34- Karlık M, Homola P, Slámová M. Accumulative roll-bonding: first experience with a twin-roll cast AA8006 alloy. J Alloys Compd. 2004;378(1-2):322-5.
35- Kim H-W, Kang S-B, Tsuji N, Minamino Y. Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets. Acta Mater. 2005;53(6):1737-49.
36- Mehr VY, Toroghinejad MR, Rezaeian A. Mechanical properties and microstructure evolutions of multilayered Al–Cu composites produced by accumulative roll bonding process and subsequent annealing. Mater Sci Eng, A. 2014;601:40-7.
37- Quadir M, Al-Buhamad O, Bassman L, Ferry M. Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta Mater. 2007;55(16):5438-48.
38- Böhm W, Merklein M, Lechner M. Innovative aluminium lightweight design by the combination of Accumulative Roll Bonding and local intermediate heat treatment. Mater Today: Proc. 2015;2(10):4992-7.
39- Kamikawa N, Tsuji N, Huang X, Hansen N. Quantification of annealed microstructures in ARB processed aluminum. Acta Mater. 2006;54(11):3055-66.
40- Hanazaki K, Shigeiri N, Tsuji N. Change in microstructures and mechanical properties during deep wire drawing of copper. Mater Sci Eng, A. 2010;527(21-22):5699-707.
41- Chowdhury SG, Srivastava V, Ravikumar B, Soren S. Evolution of Texture During accumulative roll bonding (ARB) and its comparison with normal cold rolled aluminium–manganese alloy. Scr Mater. 2006;54(9):1691-6.
42- Tsuji N, Toyoda T, Minamino Y, Koizumi Y, Yamane T, Komatsu M, et al. Microstructural change of ultrafine-grained aluminum during high-speed plastic deformation. Mater Sci Eng, A. 2003;350(1-2):108-16.
43- Pirgazi H, Akbarzadeh A, Petrov R, Kestens L. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater Sci Eng, A. 2008;497(1-2):132-8.
44- Yaghtin AH, Salahinejad E, Khosravifard A. Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations. Int J Miner, Metall Mater. 2012;19(10):951-6.
45- Jamaati R, Toroghinejad MR, Dutkiewicz J, Szpunar JA. Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process. Mater Des. 2012;35:37-42.
46- Toroghinejad MR, Ashrafizadeh F, Jamaati R. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083. Mater Sci Eng, A. 2013;561:145-51.
47- Jamaati R, Toroghinejad M. Cold roll bonding bond strengths. Mater Sci Technol. 2011;27(7):1101-8.
48- Hashemi M, Jamaati R, Toroghinejad MR. Microstructure and mechanical properties of Al/SiO2 composite produced by CAR process. Mater Sci Eng, A. 2012;532:275-81.
49- Alizadeh M, Paydar M, Jazi FS. Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process. Composites, Part B. 2013;44(1):339-43.