مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تأثیر قرار دادن محیط متخلخل بر عملکرد رگلاتورهای تقلیل فشار گاز با رویکرد کاهش نوفه جریانی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه فردوسی مشهد
2 سازمان جهاددانشگاهی خراسان رضوی
چکیده
در پژوهش حاضر، تأثیر قرار دادن محیط متخلخل در رگلاتورهای تقلیل فشار گاز طبیعی بر عملکرد و کاهش شدت صدای تولید شده بررسی شده است. ابتدا این موضوع به صورت آزمایشگاهی مورد مطالعه قرار گرفت. آزمایش­ها برای دو نمونه با محیط متخلخل ppi 10 و ppi 20 و سیستم بدون محیط متخلخل انجام شد. برای بررسی اعتبار نتایج آزمایش­ها در 4 اختلاف فشار متفاوت بالادست 20، 10، 5 و 5/2 مگاپاسکال و نسبت فشار بحرانی جریان مورد ارزیابی قرار گرفت. سپس برای ارزیابی چگونگی تأثیر پارامترهای جریانی بر عملکرد رگلاتور و تراز شدت صوت، جریان سیال عبوری از رگلاتور شبیه­ سازی عددی شد. نتایج نشان می­ دهد، استفاده از محیط متخلخل ppi 10 و ppi 20، ضریب جریان را به ترتیب 7 و 15 درصد و تراز شدت صوت را به ترتیب 15 و 20 دسی­ بل کاهش می­ دهد. نتایج حاصل از شبیه­ سازی جریان سیال نشان می­دهد، قرار دادن محیط متخلخل در مسیر جریان ضمن کاهش شدت آشفتگی و منظم کردن جریان، با کاهش بیشینه سرعت سیال و کم کردن قدرت گردابه ­ها، شدت صوت تولید شده را کاهش می­دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of place the porous medium in gas pressure regulators on performance and noise reduction

نویسندگان English

mohsen mohammadi_sarasia 1
Hossein Ajam 1
ahmad moloodi 2
1 ferdowsi university of mashhad
2 Academic Center for Education, Culture and Research
چکیده English

In the present study, the effect of the porous medium in natural-gas pressure regulators, on the operation and reduce the intensity of the sound produced, is studied. First, it was studied experimentally. Experiments apply for the porous medium 20 ppi (pores per inch) and 10 ppi and non-porous system. To check the validity of the results, experiments were evaluated in four different pressure upstream 20, 10, 5, and 2.5 MPa on the critical pressure ratio. Afterward, for evaluation of the flow parameters on the performance of regulators and the sound intensity level, numerical simulation of fluid flow was performed. The results show that the use of porous media for 10 ppi and 20 ppi, flow coefficient decrease, respectively 7% and 15%, and sound intensity level decrease, respectively 25 and 30 dB. The amount of porosity does not have much effect on the sound intensity. On the other hand, the results of the fluid flow simulation show that placing the porous medium in the flow direction reducing the turbulent intensity and regulating the flow. As well, it decreases the sound intensity by decreasing the maximum velocity and the vortex power.

کلیدواژه‌ها English

Aeroacoustics
Computational Fluid Dynamics
Porous Medium
gas pressure regulator
1. Farzaneh Gord M, Jannatabadi M. Double acting expansion engine simulation performance based on control valve type and gas composition. Modares Mechanical Engineering. 2017;17(2):29-40.
2. Ramzan M, Maqsood A. Dynamic Modeling and Analysis of a High Pressure Regulator. Mathematical Problems in Engineering. 2016;2016.
3. Kolodin I, Ryabinin M, editors. Mathematical representation of pressure regulator with variable characteristic. IOP Conference Series: Materials Science and Engineering; 2019: IOP Publishing.
4. Kolodin I. Optimization of parameters of the pressure regulator with variable characteristic. MS&E. 2020;779(1):012046.
5. Zhang C, Li G. Optimization of a direct-acting pressure regulator for irrigation systems based on CFD simulation and response surface methodology. Irrigation Science. 2017;35(5):383-95.
6. Bae Y, Kim YI. Numerical modeling of anisotropic drag for a perforated plate with cylindrical holes. Chemical Engineering Science. 2016;149:78-87.
7. Bayazit Y, Sparrow EM, Joseph DD. Perforated plates for fluid management: Plate geometry effects and flow regimes. International Journal of Thermal Sciences. 2014;85:104-11.
8. Zhao T, Zhang J, Ma L. A general structural design methodology for multi-hole orifices and its experimental application. Journal of Mechanical science and Technology. 2011;25(9):2237.
9. Özahi E. An analysis on the pressure loss through perforated plates at moderate Reynolds numbers in turbulent flow regime. Flow Measurement and Instrumentation. 2015;43:6-13.
10. Barros Filho JA, Santos AA, Navarro MA, Jordão E. Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices. Nuclear Engineering and Design. 2015;284:74-9.
11. Nicolleau F, Salim S, Nowakowski A. Experimental study of a turbulent pipe flow through a fractal plate. Journal of Turbulence. 2011(12):N44.
12. Muvvala P, Balaji C, Venkateshan S. Experimental investigation on heat transfer from square jets issuing from perforated nozzles. Heat and Mass Transfer. 2017;53(7):2363-75.
13. Teh AL, Chin KW, Teh EK, Chin WM, Chia CM, Foo JJ. Thermal mixing enhancement of a free-cooling system with a fractal orifice plate. Chemical Engineering Research and Design. 2015;100:57-71.
14. Gronych T, Jeřáb M, Peksa L, Wild J, Staněk F, Vičar M. Experimental study of gas flow through a multi-opening orifice. Vacuum. 2012;86(11):1759-63.
15. Jin Z-J, Gao Z-X, Zhang M, Liu B-Z, Qian J-Y. Computational fluid dynamics analysis on orifice structure inside valve core of pilot-control angle globe valve. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018;232(13):2419-29.
16. Zeghloul A, Azzi A, Saidj F, Messilem A, Azzopardi BJ. Pressure drop through orifices for single-and two-phase vertically upward flow—implication for metering. Journal of Fluids Engineering. 2017;139(3).
17. Huang S, Ma T, Wang D, Lin Z. Study on discharge coefficient of perforated orifices as a new kind of flowmeter. Experimental Thermal and Fluid Science. 2013;46:74-83.
18. Raju LR, Kumar SS, Nandi T. Effects of geometrical parameters on thermo-hydraulic characteristics of perforated plates. International Journal of Thermal Sciences. 2018;124:13-22.
19. Al-Sallami W, Al-Damook A, Thompson H. A numerical investigation of the thermal-hydraulic characteristics of perforated plate fin heat sinks. International Journal of Thermal Sciences. 2017;121:266-77.
20. Shaaban S. On the performance of perforated plate with optimized hole geometry. Flow Measurement and Instrumentation. 2015;46:44-50.
21. Roul MK, Dash SK. Single-phase and two-phase flow through thin and thick orifices in horizontal pipes. Journal of Fluids Engineering. 2012;134(9).
22. Guo B, Hou Q, Yu A, Li L, Guo J. Numerical modelling of the gas flow through perforated plates. Chemical Engineering Research and Design. 2013;91(3):403-8.
23. Qian J-y, Zhang M, Lei L-n, Chen F-q, Chen L-l, Wei L, et al. Mach number analysis on multi-stage perforated plates in high pressure reducing valve. Energy Conversion and Management. 2016;119:81-90.
24. Wei L, Zhu G, Qian J, Fei Y, Jin Z. Numerical simulation of flow-induced noise in high pressure reducing valve. PloS one. 2015;10(6):e0129050.
25. Jin Z-j, Chen F-q, Qian J-y, Zhang M, Chen L-l, Wang F, et al. Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station. international journal of hydrogen energy. 2016;41(12):5559-70.
26. Qian J-y, Chen M-r, Jin Z-j, Chen L-l, Sundén B. A numerical study of heat transfer effects and aerodynamic noise reduction in superheated steam flow passing a temperature and pressure regulation valve. Numerical Heat Transfer, Part A: Applications. 2020;77(10):873-89.
27. Vujić D, Radojković S. Dynamic model of gas pressure regulator. Facta universitatis-series: Mechanics, Automatic Control and Robotics. 2001;3(11):269-76.
28. Shin C-H. A numerical study on the characteristics of transient flow in a pressure regulator resulting from closure of the pressure control valve. Journal of Mechanical Science and Technology. 2013;27(2):443-9.
29. Saha BK. Numerical simulation of a pressure regulated valve to find out the characteristics of passive control circuit. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2013;7(5):936-9.
30. Shipman J, Hosangadi A, Ahuja V, editors. Unsteady analyses of valve systems in rocket engine testing environments. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
31. Hou C-w, Qian J-y, Chen F-q, Jiang W-k, Jin Z-j. Parametric analysis on throttling components of multi-stage high pressure reducing valve. Applied Thermal Engineering. 2018;128:1238-48.
32. Qian J-y, Hou C-w, Wu J-y, Gao Z-x, Jin Z-j. Aerodynamics analysis of superheated steam flow through multi-stage perforated plates. International Journal of Heat and Mass Transfer. 2019;141:48-57.
33. Xu C, Mao Y. Passive control of centrifugal fan noise by employing open-cell metal foam. Applied Acoustics. 2016;103:10-9.
34. Xu C, Mao Y. Experimental investigation of metal foam for controlling centrifugal fan noise. Applied Acoustics. 2016;104:182-92.
35. Xu C, Mao Y, Hu Z. Numerical study of pore-scale flow and noise of an open cell metal foam. Aerospace Science and Technology. 2018;82:185-98.
36. Xu C, Mao Y, Hu Z. Tonal and broadband noise control of an axial-flow fan with metal foams: Design and experimental validation. Applied Acoustics. 2017;127:346-53.
37. Arcondoulis EJ, Liu Y, Li Z, Yang Y, Wang Y. Structured Porous Material Design for Passive Flow and Noise Control of Cylinders in Uniform Flow. Materials. 2019;12(18):2905.
38. Fischer R. EN 334-the new European standard for gas pressure regulators; EN 334-die neue europaeische Norm fuer Gas-Druckregelgeraete. 2000.
39. Guide AFU. Release 14.0, ANSYS. Inc, USA, November. 2011.
40. Ergun S, Orning AA. Fluid flow through randomly packed columns and fluidized beds. Industrial & Engineering Chemistry. 1949;41(6):1179-84.