[1] Kothari, D.P., and Nagrath, I.J., 1989. Modern power system analysis. Tata McGraw-Hill Education.
[2] Kröger, D.G., 2004. Air-cooled heat exchangers and cooling towers (Vol. 1). PennWell Books.
[3] Ding, E., 1992. Air cooling techniques in power plants. Water and Electric Power Press, Beijing.
[4] Al‐Waked, R. and Behnia, M., 2004. The performance of natural draft dry cooling towers under crosswind: CFD study. International journal of energy research, 28(2), pp.147-161.
[5] Su, M.D., Tang, G.F. and Fu, S., 1999. Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition. Journal of wind engineering and industrial aerodynamics, 79(3), pp.289-306.
[6] Yang, L.J., Wu, X.P., Du, X.Z. and Yang, Y.P., 2013. Dimensional characteristics of wind effects on the performance of indirect dry cooling system with vertically arranged heat exchanger bundles. International Journal of Heat and Mass Transfer, 67, pp.853-866.
[7] Wang, W., Lv, J., Zhang, H., Liu, Q., Yue, G. and Ni, W., 2018. A quantitative approach identifies the critical flow characteristics in a natural draft dry cooling tower. Applied Thermal Engineering, 131, pp.522-530.
[8] Xiao, Liehui, et al. "Operation of air-cooling CHP generating unit under the effect of natural wind." Applied Thermal Engineering 107 (2016): 827-836.
[9] Reshadatjoo, H., Moltagh, S.Y., and Mirzayi, I., 2015. “Numerical investigation of the performance of Heller type cooling towers in different arrangements from the perspective of air intake flow rate”. Mechanics & Industry, 16(6), p.602.
[10] Ardekani, M.A., Ranjbar, M.A., and Farhani, F., 2017. “Use of guide vanes for improvement of flow pattern and enhancement of thermal performance of dry cooling towers”. Mechanics & Industry, 18(1), p.111.
[11] Goodarzi, M., and R. Keimanesh. "Heat rejection enhancement in natural draft cooling tower using radiator type windbreakers." Energy Conversion and Management 71 (2013): 120-125.
[12] Wang, W., Lyu, J., Zhang, H., Liu, Q., Yue, G. and Ni, W., 2018. A performance enhancement of a natural draft dry cooling tower in crosswind via inlet flow field reconstruction. Energy and Buildings, 164, pp.121-130.
[13] Wang, W., Zhang, H., Lyu, J., Liu, Q., Yue, G. and Ni, W., 2018. Ventilation enhancement for a natural draft dry cooling tower in crosswind via windbox installation. Applied Thermal Engineering, 137, pp.93-100.
[14] Al-Waked, R. and Behnia, M., 2005. The effect of windbreak walls on the thermal performance of natural draft dry cooling towers. Heat Transfer Engineering, 26(8), pp.50-62.
[15] Ma, H., Si, F., Kong, Y., Zhu, K. and Yan, W., 2017. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators. Applied Thermal Engineering, 112, pp.326-339.
[16] Ma, H., Si, F., Zhu, K. and Wang, J., 2018. The adoption of windbreak wall partially rotating to improve thermo-flow performance of natural draft dry cooling tower under crosswind. International Journal of Thermal Sciences, 134, pp.66-88.
[17] Jahangiri, A., and Golneshan, A., 2011. “Feasibility study of the thermal performance improvement of natural draft dry cooling towers due to flue gas injection”. World Applied Science Journal, 12(4), pp.568-675.
[18] Jahangiri, A., Borzooee, A., and Armoudli, E., 2019. “Thermal performance improvement of the three aligned natural draft dry cooling towers by wind breaking walls and flue gas injection under different crosswind conditions”. International Journal of Thermal Sciences, 137, pp.288-298.
[19] M. Goodarzi, “A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind,” J. Wind Eng. Ind. Aerodyn., vol. 98, no. 12, pp. 858–863, 2010.
[20] Goodarzi, M. and Ramezanpour, R., 2014. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition. Energy Conversion and Management, 77, pp.243-249.
[21] Sabbagh Yazdi, S.R. and Gharehjanloo, S., 2014. Proposition of obliqueable ring installation at crown of the hellertype cooling tower for reduction of throttling effect in windy condition. Modares Mechanical Engineering, 14(3), pp.185-193.
[22] Reshadatjoo, H., Moltagh, S.Y. and Mirzayi, I., 2015. Numerical investigation of the performance of Heller type cooling towers in different arrangements from the perspective of air intake flow rate. Mechanics & Industry, 16(6), p.602.
[23] Khamooshi, M., Anderson, T.N. and Nates, R.J., 2021. A numerical study on interactions between three short natural draft dry cooling towers In an in-line arrangement. International Journal of Thermal Sciences, 159, p.106505.
[24] Marincowitz, F.S., Owen, M.T.F., and Muiyser, J., 2019. “Experimental investigation of the effect of perimeter windscreens on air-cooled condenser fan performance”. Applied Thermal Engineering, 163, p.114395.
[25] Zhang, X., Li, Y., and Chen, H., 2019. “Performance Assessment of Air-Cooled Steam Condenser with Guide Vane Cascade”. Journal of Thermal Science, pp.1-11.
[26] Jin, R., Yang, X., Yang, L., Du, X., and Yang, Y., 2018. “Square array of air-cooled condensers to improve thermo-flow performances under windy conditions”. International Journal of Heat and Mass Transfer, 127, pp.717-729.
[27] Huang, X., Chen, L., Yang, L., Du, X. and Yang, Y., 2020. Cooling performance of natural draft hybrid system with parallel air path. Applied Thermal Engineering, 169, p.114971.
[28] Huang, Xianwei, et al. "Performance analyses of a combined natural draft hybrid cooling system with serial airflow path." International Journal of Heat and Mass Transfer 159 (2020): 120073.
[29] Bustamante, J.G., Rattner, A.S. and Garimella, S., 2016. Achieving near-water-cooled power plant performance with air-cooled condensers. Applied Thermal Engineering, 105, pp.362-371.
[30] Kong, Y., Wang, W., Huang, X., Yang, L., Du, X., and Yang, Y., 2017. “Direct dry cooling system through hybrid ventilation for improving cooling efficiency in power plants”. Applied Thermal Engineering, 119, pp.254-268.
[31] رضا علیزاده خنسلو، بررسی یک سیستم خنککن هیبریدی جدید(هلر-کندانسور هوایی) و امکان سنجی و آنالیز انرژی، اگزرژی و اقتصادی یک نیروگاه نمونه با سیستم خنککن جدید، دانشگاه شهید بهشتی، 1389
[32] “Archive of Fars Combined Powerplant.”
[33] Manual for installation maintenance and operation of COFIMCO G series rotor
[34] Moukalled, F., Mangani, L. and Darwish, M., 2016. The finite volume method in computational fluid dynamics (Vol. 113, pp. 10-1007). Berlin, Germany:: Springer.
[35] Patankar, S., 2018. Numerical heat transfer and fluid flow. Taylor & Francis.