مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی کارایی برج خنک‌کن خشک هیبریدی با جاگذاری ACC در داخل برج خنک‌کننده هلر

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه تبدیل انرژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران
2 دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی.
چکیده
برج‌های هلر از رایج‌ترین انواع برج‌های خنک‌کن نیروگاه‌ها می‌باشند که تغییرات شرایط جوی نظیر وزش باد بر روی راندمان حرارتی آنها بسیار تاثیر گذار است. با توجه به رویکرد کلی شرکت­های طراح سیستم­های خنک­کننده، امروزه در نیروگاه­های واقع در مناطق خشک استقبال بیشتری از کندانسور­های هوایی به چشم می­خورد. در برج­های هلر با توجه به فضای خالی بدون استفاده درداخل آنها، در این پژوهش به جای پیشنهاد جایگزینی کندانسور­های هوایی، مدل هیبریدی هلر- کندانسور­های هوایی پیشنهاد شده است که در آن با حذف کندانسور از سیکل ترکیبی، بخار خروجی از توربین مستقیما وارد رادیاتور­های کندانسور­های هوایی بدون فن که در داخل برج هلر تعبیه شده اند، شده و با مکانیزم مکش طبیعی، چگالش می­یابد. مدل پیشنهادی در دو آرایش عمود و موازی جهت باد از کندانسورهای هوایی ارائه شده است که جریان اطراف مدل با فرض تراکم ناپذیر بودن جریان توسط معادلات پیوستگی،مومنتوم، انرژی و معادلات آشفتگی به صورت سه بعدی و در دو حالت عدم وزش باد و وجود وزش باد در 8 سرعت بررسی شده است. پس از بررسی های انجام شده عملکرد برج هیبریدی با سیستم خنک­کاری واقعی نیروگاه فارس مقایسه شده و نشان داده شده است که برج خنک کن پیشنهادی در حالت عدم وزش باد، 25% نسبت به سیستم خنک­کاری عملکرد بهتری داشته و در شرایط وزش باد نیز در سرعت­های کمتر از m/s5/ 12 در دو آرایش افقی و عمودی از کندانسور­های هوایی عملکرد بهتری داشته است. با مقایسه عملکرد دو آرایش معرفی شده، آرایش عمودی به عنوان گزینه مناسب معرفی شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the efficiency of hybrid dry cooling tower by placing the Air Cooling Condenser inside the Heller cooling tower

نویسندگان English

Hesel Gharehbaei 1
Ali Jahangiri 2
Mohammad Ameri 1
1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.
2 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.
چکیده English

The Heller towers are the most common types Power plants cooling towers، where its efficiency is is very sensitive to wind. according to the general approach of designer of cooling systems، Direct dry cooling (ACC) systems are more popular today in power plants located in arid areas. In Heller towers due to the empty space inside them, in this study, instead of proposing the replacement of ACC towers, the hybrid model is proposed، where steam is Directly gonig into the ACC radiators without fan installed inside the Heller Tower، and condenses with a natural suction mechanism. The flow around the proposed model are investigated in three dimensions in two cases of no wind and no wind at 8 different wind speeds with the assumption of incompressibility flow by the continuity, momentum, energy and turbulence equations. The hybrid tower performance has been compared with Fars power plant cooling system and it has been shown that the proposed cooling tower has performed 25% better than the Fars cooling system in no wind condition. It has also performed better in wind conditions in different speeds except speeds above 12.5 m / s at a horizontal


array of ACCs..A vertical array of ACCs performance has been better than the horizontal array.Therefore, the hybrid model with vertical array of ACCs can be efficient to replace the cooling system of Fars power plant.

کلیدواژه‌ها English

Direct Dry Cooling Towers
Natural Draft Dry Cooling Towers (Heller)
Computational Fluid Dynamics
Hybrid model
[1] Kothari, D.P., and Nagrath, I.J., 1989. Modern power system analysis. Tata McGraw-Hill Education.
[2] Kröger, D.G., 2004. Air-cooled heat exchangers and cooling towers (Vol. 1). PennWell Books.
[3] Ding, E., 1992. Air cooling techniques in power plants. Water and Electric Power Press, Beijing.
[4] Al‐Waked, R. and Behnia, M., 2004. The performance of natural draft dry cooling towers under crosswind: CFD study. International journal of energy research, 28(2), pp.147-161.
[5] Su, M.D., Tang, G.F. and Fu, S., 1999. Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition. Journal of wind engineering and industrial aerodynamics, 79(3), pp.289-306.
[6] Yang, L.J., Wu, X.P., Du, X.Z. and Yang, Y.P., 2013. Dimensional characteristics of wind effects on the performance of indirect dry cooling system with vertically arranged heat exchanger bundles. International Journal of Heat and Mass Transfer, 67, pp.853-866.
[7] Wang, W., Lv, J., Zhang, H., Liu, Q., Yue, G. and Ni, W., 2018. A quantitative approach identifies the critical flow characteristics in a natural draft dry cooling tower. Applied Thermal Engineering, 131, pp.522-530.
[8] Xiao, Liehui, et al. "Operation of air-cooling CHP generating unit under the effect of natural wind." Applied Thermal Engineering 107 (2016): 827-836.‏
[9] Reshadatjoo, H., Moltagh, S.Y., and Mirzayi, I., 2015. “Numerical investigation of the performance of Heller type cooling towers in different arrangements from the perspective of air intake flow rate”. Mechanics & Industry, 16(6), p.602.
[10] Ardekani, M.A., Ranjbar, M.A., and Farhani, F., 2017. “Use of guide vanes for improvement of flow pattern and enhancement of thermal performance of dry cooling towers”. Mechanics & Industry, 18(1), p.111.
[11] Goodarzi, M., and R. Keimanesh. "Heat rejection enhancement in natural draft cooling tower using radiator type windbreakers." Energy Conversion and Management 71 (2013): 120-125.
[12] Wang, W., Lyu, J., Zhang, H., Liu, Q., Yue, G. and Ni, W., 2018. A performance enhancement of a natural draft dry cooling tower in crosswind via inlet flow field reconstruction. Energy and Buildings, 164, pp.121-130.
[13] Wang, W., Zhang, H., Lyu, J., Liu, Q., Yue, G. and Ni, W., 2018. Ventilation enhancement for a natural draft dry cooling tower in crosswind via windbox installation. Applied Thermal Engineering, 137, pp.93-100.
[14] Al-Waked, R. and Behnia, M., 2005. The effect of windbreak walls on the thermal performance of natural draft dry cooling towers. Heat Transfer Engineering, 26(8), pp.50-62.
[15] Ma, H., Si, F., Kong, Y., Zhu, K. and Yan, W., 2017. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators. Applied Thermal Engineering, 112, pp.326-339.
[16] Ma, H., Si, F., Zhu, K. and Wang, J., 2018. The adoption of windbreak wall partially rotating to improve thermo-flow performance of natural draft dry cooling tower under crosswind. International Journal of Thermal Sciences, 134, pp.66-88.
[17] Jahangiri, A., and Golneshan, A., 2011. “Feasibility study of the thermal performance improvement of natural draft dry cooling towers due to flue gas injection”. World Applied Science Journal, 12(4), pp.568-675.
[18] Jahangiri, A., Borzooee, A., and Armoudli, E., 2019. “Thermal performance improvement of the three aligned natural draft dry cooling towers by wind breaking walls and flue gas injection under different crosswind conditions”. International Journal of Thermal Sciences, 137, pp.288-298.
[19] M. Goodarzi, “A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind,” J. Wind Eng. Ind. Aerodyn., vol. 98, no. 12, pp. 858–863, 2010.
[20] Goodarzi, M. and Ramezanpour, R., 2014. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition. Energy Conversion and Management, 77, pp.243-249.
[21] Sabbagh Yazdi, S.R. and Gharehjanloo, S., 2014. Proposition of obliqueable ring installation at crown of the hellertype cooling tower for reduction of throttling effect in windy condition. Modares Mechanical Engineering, 14(3), pp.185-193.
[22] Reshadatjoo, H., Moltagh, S.Y. and Mirzayi, I., 2015. Numerical investigation of the performance of Heller type cooling towers in different arrangements from the perspective of air intake flow rate. Mechanics & Industry, 16(6), p.602.
[23] Khamooshi, M., Anderson, T.N. and Nates, R.J., 2021. A numerical study on interactions between three short natural draft dry cooling towers In an in-line arrangement. International Journal of Thermal Sciences, 159, p.106505.
[24] Marincowitz, F.S., Owen, M.T.F., and Muiyser, J., 2019. “Experimental investigation of the effect of perimeter windscreens on air-cooled condenser fan performance”. Applied Thermal Engineering, 163, p.114395.
[25] Zhang, X., Li, Y., and Chen, H., 2019. “Performance Assessment of Air-Cooled Steam Condenser with Guide Vane Cascade”. Journal of Thermal Science, pp.1-11.
[26] Jin, R., Yang, X., Yang, L., Du, X., and Yang, Y., 2018. “Square array of air-cooled condensers to improve thermo-flow performances under windy conditions”. International Journal of Heat and Mass Transfer, 127, pp.717-729.
[27] Huang, X., Chen, L., Yang, L., Du, X. and Yang, Y., 2020. Cooling performance of natural draft hybrid system with parallel air path. Applied Thermal Engineering, 169, p.114971.
[28] Huang, Xianwei, et al. "Performance analyses of a combined natural draft hybrid cooling system with serial airflow path." International Journal of Heat and Mass Transfer 159 (2020): 120073.‏
[29] Bustamante, J.G., Rattner, A.S. and Garimella, S., 2016. Achieving near-water-cooled power plant performance with air-cooled condensers. Applied Thermal Engineering, 105, pp.362-371.
[30] Kong, Y., Wang, W., Huang, X., Yang, L., Du, X., and Yang, Y., 2017. “Direct dry cooling system through hybrid ventilation for improving cooling efficiency in power plants”. Applied Thermal Engineering, 119, pp.254-268.
[31] رضا علیزاده خنسلو، بررسی یک سیستم خنک‌کن هیبریدی جدید(هلر-کندانسور هوایی) و امکان سنجی و آنالیز انرژی، اگزرژی و اقتصادی یک نیروگاه نمونه با سیستم خنک‎کن جدید، دانشگاه شهید بهشتی، 1389
[32] “Archive of Fars Combined Powerplant.”
[33] Manual for installation maintenance and operation of COFIMCO G series rotor
[34] Moukalled, F., Mangani, L. and Darwish, M., 2016. The finite volume method in computational fluid dynamics (Vol. 113, pp. 10-1007). Berlin, Germany:: Springer.
[35] Patankar, S., 2018. Numerical heat transfer and fluid flow. Taylor & Francis.