مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تحلیلی و تجربی شکل بهینه بلانک در فرآیند کشش عمیق قطعات مستطیل شکل با استفاده از معادلات جریان ورق

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه اراک
چکیده
کشش عمیق، یکی از فرآیندهای شکل‌دهی ورق محسوب می‌شود، که در آن یک ورق فلزی با عملیات مکانیکی، به شکل مطلوب می‌رسد. یکی از مهم­ترین مسائل در کشش عمیق، طراحی بهینه­ی بلانک اولیه است که از نظر اقتصادی بسیار حائز اهمیت است. در این مقاله هدف اصلی، طراحی بلانک اولیه­ی بهینه (با حداقل دور ریز وکم‌ترین عیوب)، برای کشش عمیق قطعات با مقطع مستطیلی می­باشد. برای این هدف، در این پژوهش، یک برنامه به زبان ویژوآل‌بیسیک در نرم‌افزار سالیدورک نوشته شده است، که یک قطعه­ی مستطیل‌شکل و متغیرهای سرعت پرس، عمق کشش را به عنوان ورودی گرفته و بلانک بهینه را طراحی می‌کند. همچنین در این برنامه، بلانک­هایی با کانتور مستطیل، دایره، هشت­ضلعی و لوزی به دست آمده­است؛ به طوری که بر کانتور اولیه مماس باشند. همچنین یک برنامه­ی مجزا جهت نمایش کانتور بلانک­ها در زمان­های مختلف نیز نوشته شده‌است. برنامه‌ی طراحی بلانک به دست آمده در این پژوهش، این ویژگی منحصر به فرد را دارا می‌باشد که برای هر نوع قطعه‌ی مستطیل شکل و با هر ابعاد دلخواهی، با توجه به ابعاد قطعه و عمق کشش، قابلیت طراحی بلانک بهینه را خواهد داشت. برای اطمینان از صحت برنامه­ی نوشته­شده به زبان ویژوآل بیسیک، نتایج حاصل از برنامه، با انجام کارهای تجربی، مقایسه و صحت‌سنجی شده­اند. نتایج تجربی اثبات می­کنند که بلانک­های به‌دست­آمده توسط برنامه، از دقت قابل قبولی برخوردار می‌باشند. در قطعات تولیدی تجربی، همچنین کاهش عیوب مانند گوشواره‌ای شدن و چروکیدگی در قطعات تولید شده با بلانک بهینه مشاهده شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analytical and Experimental Study of Blank Optimal Shape in the Deep Drawing Process of Rectangular Parts Using Sheet Flow Equations

نویسندگان English

Seyyed Amir Ahmadian
Moein Taheri
Mehdi Modabberifar
Ali Jabbari
Arak University
چکیده English

Deep drawing is one of the sheet forming processes, in which a metal sheet with mechanical operation, reaches the desired shape. One of the most important issues in deep drawing is the optimal design of the initial blank. In this paper, the main purpose is to design the optimal initial blank (with minimum circumference and minimum defects), for deep drawing of parts with a rectangular cross section. To this end, in this study, a program in Visual Basic has been written in SolidWorks software, in which a rectangular piece and press velocity variables take the tensile depth as input and design the optimal blank. Also in this program, blanks with rectangular, circular, octagonal and rhombus contours have been obtained; So that they are tangent to the initial contour. A separate program has also been written to display contour blanks at different times. The blank design program obtained in this study has this unique feature that for any type of rectangular piece and with any desired dimensions, according to the dimensions of the piece and the depth of tension, it will be possible to design the optimal blank. To ensure the accuracy of the program written in Visual Basic language, the results of the program have been compared and validated by performing experimental work. Experimental results prove that the blanks obtained by the program are of acceptable accuracy. In experimental parts, defects such as earring and shrinkage have also been observed in parts produced with optimal blanks.

کلیدواژه‌ها English

Deep drawing
Initial blank
rectangular
Optimization
Experimental results
1. Toh, C.H. and Kobayashi, S., 1985. Deformation analysis and blank design in square cup drawing. International Journal of Machine Tool Design and Research, 25(1), pp.15-32.
2. Kim, N. and Kobayashi, S., 1986. Blank design in rectangular cup drawing by an approximate method. International Journal of Machine Tool Design and Research, 26(2), pp.125-135.
3. Ahmetoglu, M.A., Kinzel, G. and Altan, T., 1997. Forming of aluminum alloys—application of computer simulations and blank holding force control. Journal of materials processing technology, 71(1), pp.147-151.
4. Park, C.S., Ku, T.W., Kang, B.S. and Hwang, S.M., 2004. Process design and blank modification in the multistage rectangular deep drawing of an extreme aspect ratio. Journal of Materials Processing Technology, 153, pp.778-784.
5. Lee, J.H. and Chun, B.S., 2005. Investigation on the variation of deep drawability of STS304 using FEM simulations. Journal of materials processing technology, 159(3), pp.389-396.
6. Kim, H.K. and Hong, S.K., 2007. FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet. Journal of Materials Processing Technology, 184(1-3), pp.354-362.
7. Önder, E. and Tekkaya, A.E., 2008. Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies. International Journal of Machine Tools and Manufacture, 48(5), pp.532-542.
8. Daxin, E., Mizuno, T. and Li, Z., 2008. Stress analysis of rectangular cup drawing. Journal of materials processing technology, 205(1-3), pp.469-476.
9. Hammami, W., Padmanabhan, R., Oliveira, M.C., BelHadjSalah, H., Alves, J.L. and Menezes, L.F., 2009. A deformation based blank design method for formed parts. International Journal of Mechanics and Materials in Design, 5(4), p.303.
10. Hu, Z., 2011. Realisation and application of size dependent FEM-simulation for deep drawing of rectangular work pieces. CIRP Journal of Manufacturing Science and Technology, 4(1), pp.90-95.
11. Kitayama, S., Saikyo, M., Kawamoto, K. and Yamamichi, K., 2015. Multi-objective optimization of blank shape for deep drawing with variable blank holder force via sequential approximate optimization. Structural and Multidisciplinary Optimization, 52(5), pp.1001-1012.
12. Candra, S., Batan, I., Berata, W. and Pramono, A.S., 2016. Analisis Dan Eksperimen Blank Holder Gap Minimum Pada Proses Rectangular Cup Deep Drawing. Teknoin, 22(5), pp.372-382.
13. Koowattanasuchat, P., Mahayotsanun, N., Ngernbamrung, S. and Mahabunphachai, S., 2016. Formability Effects of Variable Blank Holder Force on Deep Drawing of Stainless Steel. In MATEC Web of Conferences EDP Sciences 80, p. 15005.
14. Fazli, A., 2016. Investigation of the Effects of Process Parameters on the Welding Line Movement in Deep Drawing of Tailor Welded Blanks. International Journal of Advanced Design & Manufacturing Technology, 9(2).
15. Aminzahed, I., Mashhadi, M.M. and Sereshk, M.R.V., 2017. Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator. Materials Science and Engineering: C, 71, pp.685-689.
16. Kitayama, S., Koyama, H., Kawamoto, K., Miyasaka, T., Yamamichi, K. and Noda, T., 2017. Optimization of blank shape and segmented variable blank holder force trajectories in deep drawing using sequential approximate optimization. The International Journal of Advanced Manufacturing Technology, 91(5-8), pp.1809-1821.
17. Ben Othmen, K., Sai, K., Manach, P.Y. and Elleuch, K., 2019. Reverse deep drawing process: Material anisotropy and work-hardening effects. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(4), pp.699-713.
18. Ghennai, W., Boussaid, O., Bendjama, H., Haddag, B. and Nouari, M., 2019. Experimental and numerical study of DC04 sheet metal behaviour—plastic anisotropy identification and application to deep drawing. The International Journal of Advanced Manufacturing Technology, 100(1-4), pp.361-371.
19. Irthiea, I., 2019. Experimental and numerical evaluation of micro flexible deep drawing technique using floating ring. Journal of Manufacturing Processes, 38, pp.556-563.
20. Liu, F. and Sowerby, R., 1991. The determination of optimum blank shapes when deep drawing prismatic cups. Journal of materials shaping technology, 9(3), pp.153-159.
21. Park, S.B., Choi, Y., Kim, B.M. and Choi, J.C., 1998. A study of a computer-aided process design system for axisymmetric deep-drawing products. Journal of Materials Processing Technology, 75(1-3), pp.17-26.
22. Myllykoski, P., 2006. Using forming simulations to improve mechanical simulation accuracy. Journal of materials processing technology, 177(1-3), pp.422-425.
23. Ku, T.W., Kim, Y. and Kang, B.S., 2007. Design and modification of tool to manufacture rectangular cup of Ni-MH battery for hybrid cars. Journal of materials processing technology, 187, pp.197-201.
24. Nakayama, Y., Naka, T., Uemori, T. and Shimizu, I., 2013. Temperature and Processability of Magnesium Alloy AZ31 on Rectangular Cup Deep Drawing. In Key Engineering Materials. Trans Tech Publications 535, pp. 326-329.
25. Jabbari, A. and Salimi, S., 2014. Tailor welded blank shape optimization in rectangular cup deep drawing. Journal of Mechatronics, 2(3), pp.201-206.
26. Golshani, M.H. and Jabbari, A., 2015. Blank shape optimization on deep drawing of a twin elliptical cup using the reduced basis technique method. Advances in Science and Technology Research Journal, 9(27).
27. Sravani, V. and Alekyam, M., 2020. Simulation and optimization of deep drawing process parameters for cylindrical cup by using FEM and Taguchi. Journal of Interdisciplinary Cycle Research, 7(8), pp. 1257-1267.
28. Soltani, H., Amirat, A. and Boussaid, O., 2019. Contribution in analyzing dimensional deviations in ellipsoidal steel heads during deep drawing. The International Journal of Advanced Manufacturing Technology, 102(5-8), pp.2451-2463