مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی مسیر و کنترل همزمان طولی و عرضی خودرو بر اساس تصمیمات خوردوهای اطراف در حین مانور تعویض خط

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه صنعتی خواجه نصیرالدین طوسی
2 دانشگاه صنعتی گراتز اتریش
چکیده
با گسترش روزافزون تصادفات جاده ­ای و به­ دنبال آن توسعه سیستم­های کمک راننده، اهمیت خودروهای خودران بیش از پیش افزایش یافته است. همزمان با مطرح شدن بحث خودروهای خودران، لزوم توجه به ایمنی این خودروها و تاثیرات سایر خودروهای حاضر در جریان ترافیک بر عملکرد آنها نیز افزایش می­ یابد. طراحی و کنترل مسیر حرکت با در نظرگرفتن خودروهای اطراف در شرایط ترافیکی دینامیکی ناپایدار در حین مانورهای پیچیده از مهمترین مشکلات پیش­ روی خودروهای خودران می­ باشند. علی­ رغم پژوهش­های مختلف در حوزه تعویض خط در شرایط ترافیکی پویا و حتی سرعت­های بحرانی، درنظرگرفتن شرایط دینامیکی گذرا در آنها محدود به لحظه شروع مانور بوده و راه­ حلی برای تغییرات لحظه­ ای خودروهای اطراف در حین مانور ارائه نشده است. الگوریتم ارائه شده در این مقاله، قادر است با توجه به تصمیمات ناگهانی خودروهای اطراف در حین مانور، مسیرهای ایمن جدید را به صورت بهینه طراحی کند، همچنین اجتناب از برخورد در سراسر مانور را از طریق کنترل همزمان طولی و عرضی خودرو تضمین می کند. پس از ارزیابی عملکرد واحد تصمیم­ گیری توسط آزمونهای رانندگی واقعی، الگوریتم ارائه شده با سناریوهای مختلف در شرایط پیچیده ترافیکی گذرای دینامیکی با استفاده از نرم­ افزار متلب شبیه­ سازی شده و عملکرد مطلوب آن در محیط دینامیکی IPG CarMaker در حضور خودروهای اطراف به اثبات رسیده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Trajectory planning and simultaneous longitudinal and lateral control of vehicle based on the surrounding vehicles decisions during the lane change maneuver

نویسندگان English

Mohsen Rafat 1
Shahram Azadi 1
Ali Analooee 1
Sajjad Samiee 2
Hamidreza Rezaei 1
1 K. N. Toosi University of Technology
2 Technical University of Graz (TU Graz)
چکیده English

With the increasing number of road accidents and driver assistance systems development, the automated vehicles importance has increased more than ever. As the issue of automated vehicles comes up, attending to their safety, and the impact of the other vehicles in traffic flow on their performance dramatically increased. One of the most important problems for automated vehicles is designing and controlling the trajectory regarding the surrounding vehicles in transient dynamic traffic conditions during complicated maneuvers. Although various studies have been performed in the field of lane change in dynamic traffic conditions and even in critical high speed, considering the transient dynamic conditions has been limited to the beginning of the maneuver and no solution has been provided for the surrounding vehicles’ immediate changes during the maneuver. The algorithm presented in this paper is able to design new safe optimized trajectories according to the sudden decisions of the surrounding vehicles during the lane change maneuver, also ensures collision avoidance in the whole maneuver via vehicle’s simultaneous longitudinal and lateral control. After evaluating the decision-making unit’s performance by real driving tests, the presented algorithm is simulated with different scenarios in complicated transient dynamic traffic conditions by using MATLAB software and its desired performance has been proven in the dynamic environment of IPG CarMaker, in the presence of surrounding vehicles.

کلیدواژه‌ها English

Lane Change
path planning
decision making
Sliding mode controller
Automated vehicles
1. Road Safety, 2018. www.roadsafetymayo.ie/CausesofCollisions/.
2. Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L., 2017. Review of advanced driver assistance systems (ADAS). AIP Conference Proceedings; 1906: 120002, DOI: 10.1063/1.5012394.
3. Choi, S., Yeo, H., 2017. Framework for simulation-based lane change control for autonomous vehicles. IEEE intelligent vehicles symposium (IV), CA, pp.699–704. New York, DOI: 10.1109/IVS.2017.7995799.
4. Zhou, S., Zhang, J., Li, L., Wu, K., Ran, B., 2019. Discretionary Lane Change Model for Intelligent Connected Vehicles on Expressway. 19th COTA International Conference of Transportation Professionals, DOI: 10.1061/9780784482292.488.
5. Pourmahmoudi, A., Ghaffari, A., Javadi, M., Khodayari, A., 2019. A predictive model of discretionary lane change behavior considering human factors in the framework of time parameters. Proceedings IMechE Part D: Journal of Automobile Engineering 1–13, DOI: 10.1177/0954407019867585.
6. Dixit, S., et al., 2018a. Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, DOI: 10.1016/j.arcontrol.2018.02.001.
7. Wang, C., Zhao, W., Xu, Z., Zhou, G., 2017. Path planning and stability control of collision avoidance system based on active front steering. Science China Technology Sciences; 60: 1231–1243, DOI: 10.1007/s11431-016-9016-1.
8. Chebly, A., Talj, R., Charara, A., 2017. Coupled longitudinal and lateral control for an autonomous vehicle dynamics modeled using a robotics formalism. IFAC-Papers online; 50: 12526–12532, DOI: 10.1016/j.ifacol.2017.08.2190.
9. Xu, T., Yuan, H., 2016. Autonomous vehicle active safety system based on path planning and predictive control. 35th Chinese control conference (CCC), pp.8889–8895, DOI: 10.1109/ChiCC.2016.7554777.
10. Kayacan, E., Ramon, H., Saeys, W., 2016. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Transaction on Mechatronics; 21(2): 806–814, DOI: 10.1109/TMECH.2015.2492984.
11. Lei, C., Chaofang, H., Na, W., 2017. Obstacle avoidance control of unmanned ground vehicle based on NMPC. Chinese automation congress, pp.6402–6406, DOI: 10.1109/CAC.2017.8243931.
12. Huang, Ch., Naghdy, F., Du, H., 2016. Model Predictive Control-based Lane Change Control System for An Autonomous Vehicle, DOI: 10.1109/TENCON.2016.7848673.
13. Cai, J., Jiang, H., Chen, L., Liu, J., Cai, Y., Wang, J., 2019. Implementation and development of a trajectory tracking control system for intelligent vehicle. Journal of Intelligent & Robotic Systems; 49: 251–264, DOI: 10.1007/s10846-018-0834-4.
14. Khosroshahi, A., Ohn-Bar, E., Manubhai Trivedi, M., 2016. Surround Vehicles Trajectory Analysis with Recurrent Neural Networks. 19th International Conference on Intelligent Transportation Systems (ITSC), Brazil, DOI: 10.1109/ITSC.2016.7795922.
15. Dang, R., Wang, J., Li, Sh., Li, K., 2015. Coordinated Adaptive Cruise Control System With Lane-Change Assistance. IEEE Transaction on Intelligent Transportation Systems, DOI: 10.1109/TITS.2015.2389527.
16. Jalalmaab, M., Fidan, B., Jeon, S., Falcone, P., 2015. Model Predictive Path Planning with Time-Varying Safety Constraints for Highway Autonomous Driving. P. 213-217, International Conference on Advanced Robotics, DOI: 10.1109/ICAR.2015.7251458.
17. Zhao, M., Wang, Sh., Sun, D., Wang, X., 2019. A Car-Following Model Considering Preceding Vehicle's Lane-Changing Process., DOI: 10.1109/ACCESS.2019.2924659.
18. Liu, X., Liang, J., Xu, B., 2019. A Deep Learning Method for Lane Changing Situation Assessment and Decision Making, DOI: 10.1109/ACCESS.2019.2940853.
19. Liu, Y., Wang, X., Li, L., Cheng, S., Chen, Z., 2019. A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine, IEEE Access, Vol. 7, DOI: 10.1109/ACCESS.2019.2900416.
20. Sazgar, H., Azadi, Sh., Kazemi, R., 2018. Trajectory planning and integrated control with the Nonlinear Bicycle Model for high-speed autonomous lane change. Modares Mechanical Engineering, Vol. 18, No. 2, pp. 103-114. (in Persian فارسی)
21. Stanger, Th., Del Re, L., 2013. A Model Predictive Cooperative Adaptive Cruise Control Approach. American Control Conference, DOI: 10.1109/ACC.2013.6580028.
22. Shim, T., Adireddy, G., Yuan, H., 2012. Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226 (6), 767–778, DOI: 10.1177/0954407011430275.
23. Shamir, T., 2004. How should an autonomous vehicle overtake a slower moving vehicle: Design and analysis of an optimal trajectory. IEEE Transactions on Automatic Control, 49 (4), 607–610, DOI: 10.1109/TAC.2004.825632.
24. Noruzi, A., Kazemi, R., Azadi, Sh., 2016. Optimal Trajectory design for Automatic Lane Change in Autonomous Vehicles. The first national smart city conference, Iran. (in Persian فارسی)
25. Yoon, S., Kum, D., 2016. The Multilayer Perceptron Approach to Lateral Motion Prediction of Surrounding Vehicles for Autonomous Vehicles. Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, DOI: 10.1109/IVS.2016.7535559.
26. Schmied, R., Moser, D., Waschl, H., Del Re, L., 2016. Scenario Model Predictive Control for Robust Adaptive Cruise Control in Multi-Vehicle Traffic Situations. Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, DOI: 10.1109/IVS.2016.7535479.
27. Tehrani, H., Huy Do, Q., Egawa, M., Muto, K., Yoneda, K., Mita, S., 2015. General Behavior and Motion Model for Automated Lane Change. Intelligent Vehicles Symposium (IV), Korea, DOI: 10.1109/IVS.2015.7225839.
28. Madas, D., Nosratinia, M., Keshavarz, M., Sundstrom, P., Philippsen, R., Eidehall, A., Dahlen, K., 2013. On path planning methods for automotive collision avoidance. Intelligent Vehicles Symposium (IV), Australia, DOI: 10.1109/IVS.2013.6629586.
29. Samiee, S., Azadi, Sh., Kazemi, R., Eichberger, A., 2016. Towards a decision making algorithm for automatic lane change maneuver considering traffic dynamics. PROMET; 28: 91–103, DOI: 10.7307/ptt.v28i2.1811.
30. Samiee, S., 2015. The Design of Driver Drowsiness Detection System Based on Vehicle-driver Interaction and Controlling the Vehicle Autonomously. PhD. Thesis, Mechanical Engineering faculty, K. N. Toosi University of Technology. (in Persian فارسی)
31. Ali, I., Essam, D., Kasmarik, K., 2020. A novel design of differential evolution for solving discrete traveling salesman problems. Swarm and Evolutionary Computation 52 (100607), ELSEVIER, DOI: 10.1016/j.swevo.2019.100607.
32. MSC.Software, 2002. PAC2002 Magic-Formula tire model.
33. Cao, P., 2017. Modeling Active Perception Sensors for Real-Time Virtual Validation of Automated Driving Systems. PhD Dissertation, Department of Mechanical Engineering, Technical University of DARMSTADT.