[1] Mangardich D, Abrari F, Fawaz Z. A fracture mechanics-based approach for the fretting fatigue of aircraft engine fan dovetail attachments. International Journal of Fatigue. 2019;129:105213.
[2] Farris NH, Murthy H, Matlik JF. Chapter 4.11, Fretting fatigue. Comprehensive Structural Integrity. 2003;4:281-326.
[3] Pistons and engine testing, Editor: MAHLE GmbH, Springer, 2016.
[4] Sunde SL, Berto F, Haugen B. Predicting fretting fatigue in engineering design. International Journal of Fatigue. 2018;117:314-326.
[5] Hills DA, Nowell D. Mechanics of fretting fatigue—Oxford's contribution. Tribology International. 2014;76:1-5.
[6] Zeren M. The effect of heat-treatment on aluminum-based piston alloys. Materials & Design. 2007;28:2511-2517.
[7] Peng J, Wang B, Jin X, Xu Z, Liu J, Cai Z, Luo Z, Zhu M. Effect of contact pressure on torsional fretting fatigue damage evolution of a 7075 aluminum alloy. Tribology International. 2019;137:1-10.
[8] Peng J, Jin X, Xu Z, Zhang J, Cai Z, Luo Z, Zhu M. Study on the damage evolution of torsional fretting fatigue in a 7075 aluminum alloy. Wear. 2018;402-403:160-168.
[9] Peng J, Liu J, Cai Z, Shen M, Song C, Zhu M. Study on bending fretting fatigue damages of 7075 aluminum alloy. Tribology International. 2013;59:38-46.
[10] Cai Z, Zhu M, Lin X. Friction and wear of 7075 aluminum alloy induced by torsional fretting. Transactions of Nonferrous Metals Society of China. 2010;20(3):371-376.
[11] Sangral S, Achyuth K, Patel M, Jayaprakash M, Effect of fretting on fatigue behavior of Al alloys considering environmental effect. Materials Today: Proceedings. 2019;15(1):119-125.
[12] de Pannemaecker A, Fouvry S, Buffiere JY, Brochu M. Modelling the fretting fatigue crack growth: From short crack correction strategies to microstructural approaches. International Journal of Fatigue. 2018;117:75-89.
[13] Kim K, Yoon MJ. Fretting fatigue simulation for aluminum alloy using cohesive zone law approach. International Journal of Mechanical Sciences. 2014;85:30-37.
[14] Muthu J. Fatigue life of 7075-T6 aluminum alloy under fretting condition. Theoretical and Applied Fracture Mechanics. 2014;74/;200-208.
[15] Ferre R, Fouvry S, Berthel B, Amargier R, Ruiz-Sabariego JA. Prediction of the Fretting Fatigue crack nucleation endurance of a Ti-6V-4Al/ Ti-6V-4Al interface: Influence of plasticity and tensile/shear fatigue properties. Procedia Engineering. 2013;66:803-812.
[16] Sarhan AD, Zalnezhad E, Hamdi M. The influence of higher surface hardness on fretting fatigue life of hard-anodized aerospace AL7075-T6 alloy. Materials Science & Engineering A. 2013;560:377-387.
[17] Shinde SR, Hoeppner DW. Fretting fatigue behavior in 7075-T6 aluminum alloy. Wear. 2006;261(3-4):426-434.
[18] Du D, Liu D, Zhang X, Tang J. Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy. Applied Surface Science. 2019;488:269-276.
[19] Gean MC, Farris TN. Elevated temperature fretting fatigue of Ti-17 with surface treatments. Tribology International, 2009;42:1340-1345.
[20] Chakherlou TN, Mirzajanzadeh M, Vogwell J. Effect of hole lubrication on the fretting fatigue life of double shear lap joints: An experimental and numerical study. Engineering Failure Analysis. 2009;16:2388-2399.
[21] Gou T, Liu Z, Correia J, de Jesus MP. Experimental study on fretting-fatigue of bridge cable wires, International Journal of Fatigue. 2020;131:105321.
[22] Chao J. Fretting-fatigue induced failure of a connecting rod. Engineering Failure Analysis. 2019;96:186-201.
[23] Hojjati-Talemi R, Zahedi A, De Baets P. Fretting fatigue failure mechanism of automotive shock absorber valve. International Journal of Fatigue. 2015;73:58-65.
[24] Silva F.S, Fatigue on engine pistons – A compendium of case studies, Engineering Failure Analysis. 2006;13: 480–492
[25] Kamali F, Azadi M. An evaluation of tribological and mechanical properties of Al-Si-Cu alloy with nano-clay particles reinforcement. Journal of Mechanical Engineering Science. 2019;233(19-20):1-15.
[26] Azadi M, Zolfaghari M, Rezanezhad S, Azadi M. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 2018;124:377.
[27] Azadi M, Bahmanabadi H, Torkian J, Rasouli R. Investigation of nano-clay addition effect on microstructure, hardness and machining process in vehicle engine piston aluminum-silicon alloy, 4th National Congress on Mechanical Engineering and Chemical Engineering, Kharazmi University, Karaj, Iran, February 2019 (in Persian).
[28] Suresh R, Kumar M, Basavarajappa S, Kiran T, Mahesh Y, Katara N, Numerical simulation and experimental study of wear depth and contact pressure distribution of aluminum MMC pin on disc tribometer, Materials Today, 2017:4:11218-11228.
[29] Takiguchi M, Ando H, Takimoto T, Uratsuka A, Characteristics of friction and lubrication of two-ring piston, JSAE Review, 1996;17:11-16.
[30] Technical report on piston ring, Irankhodro Powertrain Company, Iran, 2009.
[31] Azadi M, Bahmanabadi H, Gruen F, Winter G. Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering A. 2020;788:139497.
[32] Li Y, Yang Y, Wu Y, Wang L, Liu X. Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al-Si piston alloys, Material Science Engineering. 2010;527(26):7132-7137.
[33] Hanieh H, Aghareb Parast MS, Azadi M, Azadi M. Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis, 11th International Conference on Internal Combustion Engines and Oil, Sapco Company, Tehran, Iran, February 2020 (in Persian)
[34] Jamalkhani-Khameneh M, Azadi M. Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts. Engineering Failure Analysis. 2018; 85:189-200.
[35] May A, Belouchrani MA, Taharboucht S, Boudras A. Influence of heat treatment on the fatigue behavior of two aluminum alloys 2024 and 2024 plated. Procedia Engineering. 2010;2:1795-1804.
[36] Haskel T, Verran GO, Barbieri R, Rotating and bending fatigue behavior of A356 aluminum alloy: effects of strontium addition and T6 heat treatment. International Journal of Fatigue. 2018;114:1-10.
[37] Zeren M, The effect of heat-treatment on aluminum-based piston alloys, Materials and Design, 2007;28:2511-2517.
[38] Azadi M, Rezanezhad S, Zolfaghari M, Azadi M, Investigation of tribological and compressive behaviors of Al/SiO2 nanocomposites after T6 heat treatment, Indian Academy of Sciences, Sadhana, 2020;45:28, https://doi.org/10.1007/s12046-019-1257-z.
[39] Gurpreet S, Sharma N, Study on the influence of T4 and T6 heat treatment on the wear behavior of coarse and fine WC particulate reinforced LM28 aluminum cast composites, Composites Part C: Open Access, 2021;4;100106.
[40] Liu j, Zhang Q, Zue Z, Xiong Y, Ren F, Volinsky A. Microstructure evolution of Al–12Si–CuNiMg alloy under high temperature low cycle fatigue. Materials Science and Engineering: A. 2013;574:186-190.
[41] Zhang G, Zhang J, Li B, Cai W, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading. Materials Science and Engineering: A. 2013;561:26-33.
[41] Zolfaghari M, Azadi M, Azadi M, Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting. 2020. https://doi.org/10.1007/s40962-020-00437-y
[43] Rezanejad S, Azadi M, Azadi M. Influence of heat treatment on high cycle fatigue and fracture behaviors of piston aluminum alloy under fully reversed cyclic bending, Metals and Materials International. https://doi.org/10.1007/s12540-019-00498-7.
[44] Zhang GH, Zhang JX, Li BC, Wei C. Characterization of tensile fracture in heavily alloyed Al-Si piston alloy. Progress in Natural Science: Materials International. 2011;21:380-385.
[45] Grosselle F. Development of Innovative Applications in non-ferrous metals. PhD Thesis. University of Padua. Italy. 2010.