مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی اثر تقویتی استفاده از نانوذرات در بارگذاری شبه استاتیک کامپوزیت‌های شیشه-اپوکسی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 پردیس دانشکده‌های فنی، دانشگاه تهران، تهران
2 پردیس دانشکده‌های فنی، دانشگاه تهران
چکیده
کاربرد کامپوزیت‌ها به واسطه خواصی چون نسبت استحکام به وزن بالا، مقاومت بالا نسبت به خوردگی و پوسیدگی و همچنین امکان ساخت اشکال پیچیده در صنایع مختلف با رشد چشمگیری مواجه شده، اما به دلیل آسیب‌پذیری این مواد در برابر بارهای ضربه‌ای ناخواسته، کاربرد آن‌ها با محدودیت‌هایی مواجه شده است. هزینه‌های نسبتاً بالای انجام آزمون ضربه سرعت پایین (LVI) و محدودیت داده‌برداری به دلیل مدت‌زمان کوتاه انجام آن از یک طرف و تطبیق نتایج آزمون نفوذ شبه استاتیک (QSI) با آزمون LVI از طرف دیگر، پژوهشگران را برای استفاده از آزمون QSI به‌جای آزمون LVI متقاعد کرده است. این پژوهش، تأثیر استفاده از درصدهای مختلف نانورس (1، 3، 5 و 7 درصد) بر خواص ضربه‌ای کامپوزیت شیشه-اپوکسی را مورد بررسی قرار داده و برای این منظور از آزمون QSI برای پیش‌بینی رفتار این نانوکامپوزیت بهره برده است. برای توزیع همگن نانورس در بستر رزین از همزن مکانیک و آلتراسونیک استفاده شده که طیف‌سنجی پراش انرژی پرتو ایکس (EDX) انجام شده از مقطع نانورزین، موفق بودن این فرایند را تأیید کرده است. نتایج آزمون QSI نشان داد که اضافه کردن 3 درصد نانورس به کامپوزیت شیشه-اپوکسی، انرژی جذب‌شده را تا 16 درصد و سفتی را تا 12 درصد بهبود می‌دهد. همچنین با بررسی عکس‌های میکروسکوپ الکترونی روبشی (SEM) از مقاطع نانورزین‌ها مشخص شد که نمونه‌های حاوی 7 درصد نانورس به دلیل به هم چسبیدن نانوذرات با افت خواص مکانیکی روبرو شدند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation on the reinforcing effects of using nanoparticle on quasi-static loading of the glass-epoxy composites

نویسندگان English

Sadegh Hosseinlaghab 1
Mohammadreza Farahani 2
M. Safarabadi Farahani 1
1 School of mechanical engineering, College of engineering, University of Tehran
2 2. Associate Professor, School of mechanical engineering, College of engineering, University of Tehran
چکیده English

Composites usage according to their properties such as high strength to weight ratio, high resistance to corrosion and their ability to build complex shapes in different industries are increased, but due to their Vulnerability against unwanted impact loads, their usage has been limited. Relatively higher costs of carrying out low velocity impact (LVI) test and data sampling limit due to short experiment time in one side and adaptation of quasi-static impact (QSI) test results with LVI on the other, convinced researchers to use QSI instead of LVI. This research investigated the effect of different percentage of nanoclay (1%, 3%, 5% and 7%) on impact properties of glass-epoxy composite. For this purpose, QSI test was used to forecast this nano-composite’s behavior. To disperse and distribute nanoclay homogeneously inside the resin, mechanical and ultrasonic mixers have been used; EDAX photograph token from nano-resin section confirmed the success of this process. QSI test results showed that adding 3% nanoclay to glass-epoxy composite, increases absorbed energy up to 16% and stiffness up to 12%. It was also determined by perusing SEM photographs that specimens containing 7% nanoclay had a decreased in mechanical properties due to adhesion of nanoparticles.

کلیدواژه‌ها English

Quasi-Static Test
Glass-Epoxy Composite
Nanoclay
Scanning Electron Microscope (SEM)
1. Hancox N. An overview of the impact behaviour of fibre-reinforced composites: Woodhead Publishing, Cambridge, UK; 2000.
2. Sutherland LS, Guedes Soares C. The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Composites Part B: Engineering. 2012;43(3):1459-67.
3. Khoshrooz P, Farahani M, Farahani M.S. and Khazaee, R. Experimental and numerical investigation on the residual distortion and stress fields in un-symmetric hybrid composite laminates induced by the manufacturing process. Mechanics Based Design of Structures and Machines, 2020; 1-17.‏
4. Mobarakian M, Safarabadi M, and Farahani M. Investigating the effects of cooling rate on distortion of asymmetric composite laminates. Composite Structures . 2020; 236: 111875.‏
5. Davies G, Hitchings D, Zhou G. Impact damage and residual strengths of woven fabric glass/polyester laminates. Composites Part A: Applied Science and Manufacturing. 1996;27(12):1147-56.
6. Kilic B, Agwai A, Madenci E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Structures. 2009;90(2):141-51.
7. Kim E-H, Rim M-S, Lee I, Hwang T-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Composite Structures. 2013;95:123-34.
8. Mili F, Necib B. Impact behavior of cross-ply laminated composite plates under low velocities. Composite structures. 2001;51(3):237-44.
9. Saeedifar M, Najafabadi MA, Zarouchas D, Toudeshky HH, Jalalvand M. Barely visible impact damage assessment in laminated composites using acoustic emission. Composites Part B: Engineering. 2018;152:180-92.
10. Tita V, de Carvalho J, Vandepitte D. Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches. Composite Structures. 2008;83(4):413-28.
11. Ghabezi P, Farahani M, Hosseini fakhr M and Abroshan H. Investigation of Mechanical Behavior of Alfa and Gamma Nano-Alumina/Epoxy Composite Made By Vartm. International Journal of Advanced Biotechnology and Research. 2016; 7:731-736.‏
12. Ghabezi P, Farahani M. Composite adhesive-bonded joint reinforcement by incorporation of nano-alumina particles. Journal of Computational Applied Mechanics 47.2 (2016): 231-239.
13. ‏Kim S-W, Cha M-C, Lee I, Kim E-H, Kwon I-B, Hwang T-K. Damage evaluation and strain monitoring of composite plates using metal-coated FBG sensors under quasi-static indentation. Composites Part B: Engineering. 2014;66:36-45.
14. Ghabezi P, Farahani M. Trapezoidal traction–separation laws in mode II fracture in nano-composite and nano-adhesive joints. Journal of Reinforced Plastics and Composites; 2018; 37(11): 780-794.‏
15. Wagih A, Maimí P, Blanco N, Costa J. A quasi-static indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates. Composites Part A: Applied Science and Manufacturing. 2016;82:180-9.
16. Symons DD. Characterisation of indentation damage in 0/90 lay-up T300/914 CFRP. Composites science and technology. 2000;60(3):391-401.
17. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 2015;70:82-92.
18. Iqbal K, Khan S-U, Munir A, Kim J-K. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology. 2009;69(11-12):1949-57.
19. Kaybal HB, Ulus H, Demir O, Şahin ÖS, Avcı A. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites. Engineering Science and Technology, an International Journal. 2018;21(3):399-407.
20. Reis PNB, Ferreira JAM, Zhang ZY, Benameur T, Richardson MOW. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Composites Part B: Engineering. 2013;46:7-14.
21. Taraghi I, Fereidoon A, Taheri-Behrooz F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design. 2014;53:152-8.
22. Goodarz M, Bahrami SH, Sadighi M, Saber-Samandari S. Low-velocity impact performance of nanofiber-interlayered aramid/epoxy nanocomposites. Composites Part B: Engineering. 2019;173:106975.
23. Shelly D, Singh K, Nanda T, Mehta R. Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Materials Research Express. 2018;5(10).
24. Saba N, Jawaid M, Asim M. Recent Advances in Nanoclay/Natural Fibers Hybrid Composites. Nanoclay Reinforced Polymer Composites. Engineering Materials2016. p. 1-28.
25. Naresh K, Rajalakshmi K, Vasudevan A, Senthil Kumaran S, Velmurugan R, Shankar K. Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasi-static punch shear loading. Advances in Materials and Processing Technologies. 2018;4(3):345-57.
26. Christy A, Purohit R, Rana RS, Singh SK, Rana S. Development and Analysis of Epoxy/nano SiO 2 Polymer Matrix Composite fabricated by Ultrasonic Vibration assisted Processing. Materials Today: Proceedings. 2017;4(2):2748-54.
27. International A. Standard Test Method for Measuring the Damage Resistance of a Fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event: ASTM International; 2007.
28. Saravanakumar K, Arumugam V. Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring. Engineering Fracture Mechanics. 2018;201:36-46.
29. Kinloch A, Maxwell D, Young R. Micromechanisms of crack propagation in hybrid-particulate composites. Journal of materials science letters. 1985;4(10):1276-9.