1. Hancox N. An overview of the impact behaviour of fibre-reinforced composites: Woodhead Publishing, Cambridge, UK; 2000.
2. Sutherland LS, Guedes Soares C. The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Composites Part B: Engineering. 2012;43(3):1459-67.
3. Khoshrooz P, Farahani M, Farahani M.S. and Khazaee, R. Experimental and numerical investigation on the residual distortion and stress fields in un-symmetric hybrid composite laminates induced by the manufacturing process. Mechanics Based Design of Structures and Machines, 2020; 1-17.
4. Mobarakian M, Safarabadi M, and Farahani M. Investigating the effects of cooling rate on distortion of asymmetric composite laminates. Composite Structures . 2020; 236: 111875.
5. Davies G, Hitchings D, Zhou G. Impact damage and residual strengths of woven fabric glass/polyester laminates. Composites Part A: Applied Science and Manufacturing. 1996;27(12):1147-56.
6. Kilic B, Agwai A, Madenci E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Structures. 2009;90(2):141-51.
7. Kim E-H, Rim M-S, Lee I, Hwang T-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Composite Structures. 2013;95:123-34.
8. Mili F, Necib B. Impact behavior of cross-ply laminated composite plates under low velocities. Composite structures. 2001;51(3):237-44.
9. Saeedifar M, Najafabadi MA, Zarouchas D, Toudeshky HH, Jalalvand M. Barely visible impact damage assessment in laminated composites using acoustic emission. Composites Part B: Engineering. 2018;152:180-92.
10. Tita V, de Carvalho J, Vandepitte D. Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches. Composite Structures. 2008;83(4):413-28.
11. Ghabezi P, Farahani M, Hosseini fakhr M and Abroshan H. Investigation of Mechanical Behavior of Alfa and Gamma Nano-Alumina/Epoxy Composite Made By Vartm. International Journal of Advanced Biotechnology and Research. 2016; 7:731-736.
12. Ghabezi P, Farahani M. Composite adhesive-bonded joint reinforcement by incorporation of nano-alumina particles. Journal of Computational Applied Mechanics 47.2 (2016): 231-239.
13. Kim S-W, Cha M-C, Lee I, Kim E-H, Kwon I-B, Hwang T-K. Damage evaluation and strain monitoring of composite plates using metal-coated FBG sensors under quasi-static indentation. Composites Part B: Engineering. 2014;66:36-45.
14. Ghabezi P, Farahani M. Trapezoidal traction–separation laws in mode II fracture in nano-composite and nano-adhesive joints. Journal of Reinforced Plastics and Composites; 2018; 37(11): 780-794.
15. Wagih A, Maimí P, Blanco N, Costa J. A quasi-static indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates. Composites Part A: Applied Science and Manufacturing. 2016;82:180-9.
16. Symons DD. Characterisation of indentation damage in 0/90 lay-up T300/914 CFRP. Composites science and technology. 2000;60(3):391-401.
17. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 2015;70:82-92.
18. Iqbal K, Khan S-U, Munir A, Kim J-K. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology. 2009;69(11-12):1949-57.
19. Kaybal HB, Ulus H, Demir O, Şahin ÖS, Avcı A. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites. Engineering Science and Technology, an International Journal. 2018;21(3):399-407.
20. Reis PNB, Ferreira JAM, Zhang ZY, Benameur T, Richardson MOW. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Composites Part B: Engineering. 2013;46:7-14.
21. Taraghi I, Fereidoon A, Taheri-Behrooz F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design. 2014;53:152-8.
22. Goodarz M, Bahrami SH, Sadighi M, Saber-Samandari S. Low-velocity impact performance of nanofiber-interlayered aramid/epoxy nanocomposites. Composites Part B: Engineering. 2019;173:106975.
23. Shelly D, Singh K, Nanda T, Mehta R. Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Materials Research Express. 2018;5(10).
24. Saba N, Jawaid M, Asim M. Recent Advances in Nanoclay/Natural Fibers Hybrid Composites. Nanoclay Reinforced Polymer Composites. Engineering Materials2016. p. 1-28.
25. Naresh K, Rajalakshmi K, Vasudevan A, Senthil Kumaran S, Velmurugan R, Shankar K. Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasi-static punch shear loading. Advances in Materials and Processing Technologies. 2018;4(3):345-57.
26. Christy A, Purohit R, Rana RS, Singh SK, Rana S. Development and Analysis of Epoxy/nano SiO 2 Polymer Matrix Composite fabricated by Ultrasonic Vibration assisted Processing. Materials Today: Proceedings. 2017;4(2):2748-54.
27. International A. Standard Test Method for Measuring the Damage Resistance of a Fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event: ASTM International; 2007.
28. Saravanakumar K, Arumugam V. Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring. Engineering Fracture Mechanics. 2018;201:36-46.
29. Kinloch A, Maxwell D, Young R. Micromechanisms of crack propagation in hybrid-particulate composites. Journal of materials science letters. 1985;4(10):1276-9.