مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی توزیع تنش در حفره‌های خوردگی روی پره‌ی کمپرسور به روش المان مرزی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه زنجان
چکیده
در این پژوهش به بررسی توزیع تنش در حفره­های خوردگی روی پره­ی کمپرسور توربین گازی به روش المان مرزی پرداخته می­شود. در این راستا ابتدا نمونه­ی خمش دو نقطه­ای از جنس پره­ی کمپرسور توربین گازی ساخته شده و به کمک آزمون پتانسیو استاتیک تحت پتانسیل mVSCE 350 در محلول 5/3 درصد وزنی سدیم کلرید قرار می­گیرد تا نمونه در محل خمش بیشینه دچار خوردگی حفره­ای شود. سپس عمق حفره­های رشد یافته با استفاده از دستگاه ادی­کارنت محاسبه می­شود. با شبیه­سازی نمونه­ی تحت خوردگی حفره­ای در نرم­افزار کامسول و تطابق نتایج آن با نتایج دستگاه ادی­کارنت مشخص شد که شبیه­سازی تا حد زیادی می­تواند جایگزین تست آزمایشگاهی شود. برای محاسبه­ی توزیع تنش کششی در مقطع عرضی نمونه­ی تحت خوردگی حفره­ای، گسسته­سازی معادله­ی لاپلاس حاکم بر نمونه انجام شد. با حل معادلات گسسته­سازی شده و مقایسه­ی آن­ها با نتایج نرم­افزار کامسول نتایج یکسانی بدست آمد. با توجه به نتایج، حفره تمایل دارد به صورت سطحی رشد کند. این یعنی رشد سطحی حفره از رشد آن در جهت عمق بیشتر است. دلیل این امر این است که در نزدیکی سطح نمونه، تنش کششی و پتانسیل الکتریکی زیاد است و همچنین واکنش­های شیمیایی و خوردگی در نواحی نزدیک به سطح حفره بیشتر است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of Stress Distribution in Corrosion Pits on the Compressor Blade Using Boundary Element Method

نویسندگان English

Yousef Mollapour
Esmaeil Poursaeidi
University of Zanjan
چکیده English

The aim of this paper is to investigate the growth of pitting corrosion in CUSTOM 450 stainless steel and to obtain strain values in growing pits at the maximum bending region. In this regard, a two-point bending specimen was made and subjected to a potentiostatic test under the potential of 350 mVSCE in the 3.5 wt% sodium chloride solution. Then, the depth of the grown pits is calculated using Eddy Current device. By simulating a sample under the pitting corrosion in COMSOL Multiphysics software and matching its results with the results of the Eddy Current device, it was found that the simulation can largely replace the laboratory test. To calculate the tensile stress distribution in the cross section of the sample under pitting corrosion, the Laplace equation governing the sample was discretized. The same results were obtained by solving the discrete equations and comparing them with the results of COMSOL Multiphysics software. According to the results, the pit tends to grow superficially. This means that the surface growth of the pit is greater than its growth in the direction of depth. This is due to the fact that near the sample surface, tensile stress and electrical potential are high, as well as chemical reactions and corrosion in areas near to the pit surface.

کلیدواژه‌ها English

pitting corrosion
CUSTOM 450 Alloy
stress distribution
Boundary element method
Vompressor Blade
[1] Babaei A, Aghaei Togh R, Nobakhti M, Montazeri M. Numerical Investigation of the Effects of Minor Geometric Changes of the Stator Blade Profiles on the Steady Performance of a High-pressure Gas-turbine. Modares Mechanical Engineering. 2019; 19 (5) :1209-1220. [Persian]
[2] Ashegh H, Shirzadi Javid A A, Ghoddousi P, Habibnejad Korayem A, Oraie M A. Investigation of corrosion parameters relationship of reinforcement by vapor permeability in the surface protected concretes. IQBQ. 2018; 18 (2) :202-194. [Persian]
[3] Ghanooni Bagha M, Asgarani S. Influence of effective chloride corrosion parameters variations on corrosion initiation. IQBQ. 2017; 17 (3) :69-77. [Persian]
[4] Poursaeidi E, et al. Experimental investigation on erosion performance and wear factors of custom 450 steel as the first row blade material of an axial compressor. International Journal of Surface Science and Engineering. 2017; 11 (2): 85-99.
[5] Poursaeidi E et al. Experimental studies of erosion and corrosion interaction in an axial compressor first stage rotating blade material. Applied Physics A. 2018; 124 (9): 629.
[6] Lorenz W. J., Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corrosion Science. 1981; 21(9): 647-672.
[7] Chen, J. F., Bogaerts W. F. The physical meaning of noise resistance. Corrosion Science. 1995; 37(11): 1839-1842.
[8] Frankel Gerald S. Electrochemical techniques in corrosion: status, limitations, and needs. Journal of Testing and Evaluation. 2014; 42(3): 517-538.
[9] Marcelo M, Luiz Carlos C. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting. Materials Characterization. 2009; 60 (2): 150-155.
[10] Boissy C., Alemany-Dumont C, Normand B. EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution. Electrochemistry Communications. 2013; 26 (1): 10-12.
[11] Invernizzi A. J., Sivieri E, Trasatti S. Corrosion behaviour of Duplex stainless steels in organic acid aqueous solutions. Materials Science and Engineering. 2008; 485 (1): 234-242.
[12] Wenman, M. R., et al. A finite-element computational model of chloride-induced trans granular stress-corrosion cracking of austenitic stainless steel. Acta Materialia. 2008; 56 (16): 4125-4136.
[13] Ye Z, Zhu Z, Zhang Q, Liu X, Zhang J, Cao F. In situ SECM mapping of pitting corrosion in stainless steel using submicron Pt ultramicroelectrode and quantitative spatial resolution analysis. Corrosion Science.2018; 143 (1): 221-228.
[14] Anantha K.H., Örnek C, Ejnermark S., Thuvander A, Medvedeva A., Sjöström J, Pan J. Experimental and modelling study of the effect of tempering on the susceptibility to environment-assisted cracking of AISI 420 martensitic stainless steel. Corrosion Science. 2019; 148 (1): 83-93.
[15] Yan Y., Shao B., Zhou X., Song S., Zhou X., Yan, X. A study on the influence of double ellipsoidal pitting corrosion on the collapsing strength of the casing. Engineering Failure Analysis. 2019; 100 (1): 11-24.
[16] Wang, Y., & Cheng, G., Quantitative evaluation of pit sizes for high strength steel: Electrochemical noise, 3-D measurement, and image-recognition-based statistical analysis. "Materials & Design", 2016. Vol. 94, pp. 176-185.
[17] Orlikowski, J., Jazdzewska, A., Mazur, R., & Darowicki, K., "Determination of pitting corrosion stage of stainless steel by galvanodynamic impedance spectroscopy." Electrochimica Acta, 2017. Vol. 253, pp. 403-412.
[18] Lu, J. Z., Han, B., Cui, C. Y., Li, C. J., & Luo, K. Y., "Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers." Optics & Laser Technology, 2017. Vol. 88, pp.250-262.
[19] Zhang, J., Shi, X. H., & Soares, C. G., "Experimental analysis of residual ultimate strength of stiffened panels with pitting corrosion under compression." Engineering Structures, 2017. Vol. 152, pp. 70-86.
[20] Tian, H., Wang, X., Cui, Z., Lu, Q., Wang, L., Lei, L., ... & Zhang, D., "Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater." Corrosion Science, 2018. Vol. 144, pp. 145-162.
[21] Asadi, Z. S., & Melchers, R. E., "Clustering of corrosion pit depths for buried cast iron pipes." Corrosion Science, 2018. Vol. 140, pp.92-98.
[22] Salleh, S., "Modelling Pitting Corrosion in Carbon Steel Materials" Doctoral dissertation, The University of Manchester (United Kingdom), 2013.
[23] Vijayaraghavan, V., Garg, A., Gao, L., & Vijayaraghavan, R., "Finite element based physical chemical modeling of corrosion in magnesium alloys." Metals, 2017. Vol. 7, No. 3, pp. 83.
[24] Omidi Bidgoli, M., Reza Kashyzadeh, K., Rahimian Koloor, S. S., & Petru, M., Estimation of Critical Dimensions for the Crack and Pitting Corrosion Defects in the Oil Storage Tank Using Finite Element Method and Taguchi Approach. Metals, 2020. 10(10), 1372.
[25] Pedram O., Poursaeidi E. Total life estimation of a compressor blade with corrosion pitting, SCC and fatigue cracking. Journal of Failure Analysis and Prevention. 2018; 18 (2): 423-434.
[26] Pedram O, Poursaeidi E. Pitting corrosion as the main cause of crack initiation in a compressor blade. 3rd International Conference on Mechanical and Aerospace Engineering, Tehran, Imam Khomeini International University - Iranian Association of Thermal and Refrigeration Engineering. 2018.
[27] Pedram O, Poursaeidi E. An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade. International Journal of Engineering. 2014; 27 (5): 785-792.
[28] Mollapour Y, Pedram O, Poursaeidi E, Khamedi R. Numerical Investigation of Pitting Corrosion of CUSTOM 450 Alloy in Acetic Acid and Sodium Acetate. 27th Annual International Conference of Iranian Society of Mechanical Engineering and 7th Conference On Thermal Power Plants (ISME 2019). Tarbiat Modares University - University of Tehran, Tehran; 2019. [Persian]
[29] Pedram O, Mollapour Y, Shayani-jam H, Poursaeidi E, Khamedi R. (2020). Pitting Corrosion Behavior of CUSTOM 450 Stainless Steel Using Electrochemical Characterization. Metals and Materials International. 2020; 1-11.
[30] Poursaiedi E, Salarvand A. Effect of coating surface finishing on fatigue behavior of C450 steel CAPVD coated with (Ti, Cr) N. Journal of Materials Engineering and Performance. 2016; 25(8): 3448-3455.
[31] Technical datasheet. CUSTOM 450 Stainless, CARPENTER; 2009:1-12.
[32] Ruiz A, Manzano C, Alonso B, Formulation and Mathematical Model in Cathodic Protection. Private Communication with the Author at the Department of Mathematics. Polytechnic University of Madrid, Spain.
[33] Ruiz A, Gavete L, Alonso B, Camara A. Simulation and Numerical Results for Cathodic Protection Using Infinite Elements. Private Communication with the Author at the Department of Mathematics, Polytechnic University of Madrid. Spain.
[34] Zienkiewicz O.C, Cheung Y.K.K. The Finite Element Method in Structural and Continuum Mechanics. Mc Graw Hill. London; 1976.
[35] Huaixiang C, Zhang H, Xingqi O. Effects of stress on pitting corrosion behavior of low-carbon steel. ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers Digital Collection; 2013.