مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و ساخت میکروکانال آکوستوفلویدیکی دو گره‌ای

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجو، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران
2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران
3 استاد، مرکز پژوهش فیزیولوژی کاربردی، دانشکده فیزیولوژی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
4 محقق، مرکز صوت و ارتعاش، دانشگاه فنی سیدنی، سیدنی، استرالیا
چکیده
امروزه تحقیقات در استفاده از میکروکانال‌های آکوستوفلویدیکی در جداسازی میکروذرات و سلول‌ها رو به گسترش است. برای استفاده بهینه از انرژی صوتی، این میکروکانال‌ها باید از نظر ابعادی به درستی طراحی و ساخته شود. در این مقاله نحوه طراحی و ساخت میکروکانال‌های آکوستوفلویدیکی شرح داده شده و در ادامه یک میکروکانال آکوستوفلویدیکی فلزی دو گره‌ای طراحی و ساخته شده است. به منظور ارائه روشی ارزان و قابل اعتماد، این میکروکانال از جنس آلومینیوم و با ماشین فرز CNC سه محور ساخته شد. سپس به منظور بررسی عملکرد میکروکانال‌ از نظر آکوستوفلویدیکی، آزمایش‌هایی برای بررسی قابلیت آن‌ در آوردن ذرات شناور در خون انسان (مانند گلبول‌های سفید و قرمز) و سلول‌های BT-20 محلول در PBS به محل گره‌های موج انجام شد و نشان داده شد که روش طراحی و ساخت بکار گرفته شده مناسب برای میکروکانال‌های آکوستوفلویدیکی است. همچنین از آنجا که استهلاک امواج صوتی در میکروکانال، موجب افزایش دمای سیال و آسیب به سلول‌ها می‌شود، افزایش دما در این میکروکانال بررسی و نشان داده شد که طراحی صحیح و استفاده از فلزات با ضریب انتقال حرارت بالا در ساخت میکروکانال می‌تواند از افزایش دما به مقداری که سلول‌ها آسیب ببینند جلوگیری کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Designing and Manufacturing of a 2-Node Acoustofluidic Microchannel

نویسندگان English

Alireza Barani 1
Peiman Mosaddegh 2
Shaghayegh Haghjooy Javanmard 3
Shahrokh Sepehrirahnama 4
1 Student, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
2 Associate Professor, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
3 Professor, Applied Physiology Research Center, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Research Fellow, Centre for Audio Acoustics and Vibration, University of Technology Sydney, Sydney, Australia
چکیده English

These days, investigation on using acoustofluidic microchannels in separation of microparticles and cells is under consideration. Working under optimum efficiency, these microchannels should be designed and manufactured truly. In this work, a new methodology for designing and manufacturing of acoustofluidic microchannels are explained. Then, a metallic microchannel with 2-nodes of pressure wave based on this method was developed. For mass production purpose, a low cost and reliable method which is CNC micromachining is used. Also, to conduct the heat generated by the wave, this microchannel was made out of aluminum and then polishing technique is applied. Then, the performance of this microchannel in agglomerating of human blood cells and BT-20 breast cancer cells to nodal lines was experimentally studied. The results showed that the applied design and manufacturing technique are suitable. Although some tests were performed to find temperature rise of microchannel due to damping effect, it was found that true design method and also using metals with high thermal conductivity can prevent the temperature increase to the point beyond which living cells will be hurt.

کلیدواژه‌ها English

Acoustofluidics
Microfluidics
Microchannel
acoustic wave
Separation
[1] C. M. Yousuff, E. T. W. Ho, I. H. K., and N. H. B. Hamid, "Microfluidic Platform for Cell Isolation and Manipulation Based on Cell Properties," micromachines, vol. 8, no. 15, pp. 1-26, 2017.
[2] P. Augustsson, J. T. Karlsen, H.-W. Su, H. Bruus, and J. Voldman, "Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping," Nature Communications, vol. 7, no. 11556 2016.
[3] S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications " Lab on a Chip, vol. 7, no. 9, pp. 1094-1110, 2007.
[4] Z. M. Peng Li, Zhangli Peng, Lanlan Zhou, Yuchao Chen, Po-Hsun Huang, Cristina I. Truica, Joseph J. Drabick, Wafik S. El-Deiry, Ming Dao, Subra Suresh, Tony Jun Huang, "Acoustic separation of circulating tumor cells," PNAS, vol. 112, no. 16, 2015.
[5] M. Antfolk, C. Antfolk, H. Lilja, T. Laurell, and P. Augustsson, "A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells," Lab Chip, vol. 15, pp. 2102–2109, 2015.
[6] X. Ding et al., "Cell separation using tilted-angle standing surface acoustic waves," PNAS, vol. 111, no. 36, 2014.
[7] J. Shi et al., "Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab Chip, vol. 11, pp. 2319–2324, 2011.
[8] X. Ding et al., "Standing surface acoustic wave (SSAW) based multichannel cell sorting," Lab Chip, vol. 12, pp. 4228–4231, 2012.
[9] T. Franke, S. Braunmuller, L. Schmid, A. Wixforth, and D. A. Weitz, "Surface acoustic wave actuated cell sorting (SAWACS)," Lab Chip, vol. 10, pp. 789–794, 2010.
[10] S. K. Ravula et al., "Microfabricated particle focusing device ", 2013.
[11] E. J. Fong et al., "Acoustic focusing with engineered node locations for high-performance microfluidic particle separation," Analyst, vol. 139, pp. 1192–1200, 2014.
[12] J. Shi, D. Ahmed, X. Mao, S. S. Lin, A. Lawit, and T. J. Huang, "Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)," Lab Chip, vol. 9, no. 20, pp. 2890–2895, 2009.
[13] J. Zhang, L. Meng, F. Cai, H. Zheng, and C. R. P. Courtney, "Multi-scale patterning of microparticles using a combination of surface acoustic waves and ultrasonic bulk waves," Applied Physics Letters, vol. 104, 2014.
[14] S. Li et al., "Standing surface acoustic wave (SSAW)-based cell washing," Lab Chip, vol. 15, pp. 331–338, 2015.
[15] H. Bruus et al., "Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation," Lab Chip, vol. 11, pp. 3579–3580, 2011.
[16] V. S. Chivukula, M. S. Shur, and D. Čiply, "Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine," Physica Status Solidi (a), vol. 204, no. 10, pp. 3209–3236, 2007.
[17] S. Sukhatme and A. Agarwal, "Digital microfluidics: Techniques, their applications and advantages," Bioengineering & Biomedical Science 2012.
[18] H. P. Alireza Barani, Mohsen Janmaleki, Aminollah Mohammadi, Peiman Mosaddegh, Alireza Fadaei-Tehrani, Amir Sanati-Nezhad, "Microfluidic integrated acoustic waving for manipulation of cells and molecules," Biosensors and Bioelectronics, vol. 85, pp. 714–725, 2016.
[19] M. A. Faridi, H. Ramachandraiah, I. Iranmanesh, D. Grishenkov, M. Wiklund, and A. Russom, "Microbubble activated acoustic cell sorting," Biomed Microdevices, vol. 19, no. 23, pp. 2-7, 2017.
[20] B. Hammarström et al., "Non-contact acoustic cell trapping in disposable glass capillaries," Lab Chip, vol. 10, pp. 2251-2257, 2010.
[21] N. Sivanantha et al., "Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics," Applied Physics Letters, vol. 105, p. 103704, 2014.
[22] T. Wang et al., "Surface acoustic waves (saw)-based biosensing for quantification of cell growth in 2d and 3d cultures," Sensors vol. 15, pp. 32045–32055, 2015.
[23] M. Wiklund et al., "Ultrasound-Induced Cell–Cell Interaction Studies in a Multi-Well Microplate," Micromachines, vol. 5, no. 1, pp. 27-49, 2014.
[24] L. Schmid, D. A. Weitz, and T. Franke, "Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter," Lab Chip, vol. 14, no. 19, pp. 3710–3718, 2014.
[25] J. K. Luo et al., "Moving-part-free microfluidic systems for lab-on-a-chip," Micromechanics and Microengineering, vol. 19, p. 5, 2009.
[26] F. Zhang et al., "A Microfluidic love-wave biosensing device for psa detection based on an aptamer beacon probe," Sensors, vol. 15, pp. 13839-13850, 2015.
[27] M. Bisoffi et al., "Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor," Biosensors & Bioelectronics, vol. 23, no. 9, pp. 1397–1403, 2008.
[28] K. Länge, F. Bender, A. Voigt, H. Gao, and M. Rapp, "A Surface Acoustic Wave Biosensor Concept with Low Flow Cell Volumes for Label-Free Detection," Analytical Chemistry, vol. 75, no. 20, pp. 5561–5566, 2003.
[29] H. Li, J. Friend, L. Yeo, A. Dasvarma, and K. Traianedes, "Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells," Biomicrofluidics, vol. 3, no. 3, pp. 034102-11, 2009.
[30] M. Wiklund and B. Önfelt, "Ultrasonic manipulation of single cells," Single-Cell Analysis, vol. 853, pp. 177-196, 2012.
[31] M. Ohlin, A. Fornell, H. Bruus, and M. Tenje, "Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis," J. Micromech. Microeng., vol. 27, no. 084002, pp. 1-8, 2017.
[32] P. Hahn and J. Dual, "A numerically efficient damping model for acoustic resonances in microfluidic cavities," Physics Procedia, vol. 70, pp. 85-88, 2015.
[33] H. Nowotny and E. Benes, "General one‐dimensional treatment of the layered piezoelectric resonator with two electrodes," J. Acoust. Soc. Am., vol. 82, no. 2, pp. 513-521, 1987.
[34] H. Nowotny, E. Benes, and M. Schmid, "Layered piezoelectric resonators with an arbitrary number of electrodes (general one-dimensional treatment)," J. Acoust. Soc. Am., vol. 90, no. 3, pp. 1238-1245, 1991.
[35] M. Gröschl, "Ultrasonic Separation of Suspended Particles - Part I: Fundamentals," Acustica, vol. 84, no. 3, pp. 432-447, 1998.
[36] J. J. Hawkes et al., "Single half-wavelength ultrasonic particle filter: predictions of the transfer matrix multilayer resonator model and experimental filtration results," J. Acoust. Soc. Am., vol. 111, no. 3, pp. 1259-1266, 2002.
[37] G. M. J. Hawkes Jeremy, B. Ewald, N. Helmut, C.W. Terence, "Positioning particles within liquids using ultrasound force fields," presented at the Forum Acusticum Revista 2002.
[38] MartynHill and R. J. K. Wood, "Modelling in the design of a flow-through ultrasonic separator," Ultrasonics, vol. 38, pp. 662-665, 2000.
[39] M. Hill, Y. Shen, and J. J. Hawkes, "Modelling of layered resonators for ultrasonic separation," Ultrasonics, vol. 40, pp. 385–392, 2002.
[40] M. Hill, "The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators," J. Acoust. Soc. Am., vol. 114, no. 5, pp. 2654-2661, 2003.
[41] M. Hill, R. J. Townsend, and N. R. Harris, "Modelling for the robust design of layered resonators for ultrasonic particle manipulation," Ultrasonics, vol. 48, pp. 521–528, 2008.
[42] P. B. Muller and H. Bruus, "Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels," Physical Review E, vol. 90, no. 043016, 2014.
[43] H. B. Jonas T. Karlsen, "Forces acting on a small particle in an acoustical field in a thermoviscous fluid," physical Review E, vol. 92, p. 043010, 2015.
[44] R. P. Moiseyenko and H. Bruus, "Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices," Physical review applied, vol. 11, no. 1, p. 014014, 2019.
[45] W. N. Bodé, L. Jiang, T. Laurell, and H. Bruus, "Microparticle acoustophoresis in aluminum-based acoustofluidic devices with pdms covers," Micromachines, vol. 11, no. 292, 2020.
[46] O. S. Philipp Hahn, Jurg Dual, "Modeling and optimization of acoustofluidic micro-devices," Lab Chip, vol. 14, pp. 3937-3948, 2014.
[47] H. B. Mikkel Settnes, "Forces acting on a small particle in an acoustical field in a viscous fluid," physical review E, vol. 85, p. 016327, 2012.
[48] M. W. H. L. a. H. Bruus, "Three-dimensional numerical modeling of acoustic trapping in glass capillaries," Physical Review Applied, vol. 8, no. 024020, 2017.
[49] P. Hahn, "Numerical simulation tools for the design and the analysis of acoustofluidic devices," PhD, ETH Zurich, 2015.