مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

روشی جدید برای شکست نامتقارن میکروقطرات غیرنیوتنی

نوع مقاله : پژوهشی اصیل

نویسنده
فارغ التحصیل دکترای مهندسی مکانیک از دانشگاه صنعتی شریف و عضو هیئت علمی (استادیار) دانشگاه فنی و حرفه ای
چکیده
در این پژوهش، شکست نامتقارن قطره‌ی با سیال غیرنیوتنی (با رفتار توانی) در یک هندسه‌ی جدید (اتصال شبکه‌ای) مورد بررسی قرار گرفته است. هندسه‌ی مذکور می‌تواند یک قطره‌ی اولیه را به شش قطره با اندازه‌های مختلف تبدیل نماید. روش پژوهش، شبیه‌سازی عددی به روش Volume Of Fluid (VOF) است. نتایج عددی با نتایج یک مسئله‌ی مبنا مقایسه و تطابق بسیار خوبی مشاهده شده است. نتایج نشان داد که در نواحی نزدیک به دیواره، اختلاط مواد داخل قطره بهتر انجام می‌شود که این موضوع در کاربردهای صنعتی جریان‌های قطره‌ای به ویژه در صنایع داروسازی و شیمیایی، دارای اهمیت است. نتایج نشان داد که بیشترین اندازه‌ی گردابی در شاخه‌ی K1 (پایین‌ترین شاخه‌ی خروجی در سیستم) به ترتیب 26 و 44 و 28 درصد بیشتر از بیشترین اندازه‌ی گردابی در شاخه‌های K2 و K3 و K4 است (K4 بالاترین شاخه‌ی خروجی در سیستم است). همچنین بیشترین لزجت مؤثر در شاخه‌ی K1 به ترتیب 27 و 29 و 24 درصد کمتر از بیشترین لزجت مؤثر در شاخه‌های K2، K3 و K4 است. بنابراین بهترین عملکرد در اختلاط مواد داخل قطره در شاخه‌های خروجی مربوط به شاخه‌ی K1 است. همچنین مشخص شد که فشار داخل قطره (هم قبل و هم بعد از شکست) در راستای عرض کانال ثابت است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

A novel method for asymmetric breakup of non-Newtonian micro droplets

نویسنده English

Ahmad Bedram
Ph.D. Graduate of Sharif university of technology and assistant professor of technical an vocational university
چکیده English

In this paper, an asymmetric breakup of non-Newtonian droplet (with power law behavior) in a new geometry (network junction) has been investigated. The geometry can break an initial droplet into six unequal size droplets. The research method is numerical simulation with Volume of Fluid (VOF) algorithm. The numerical results are compared with the results of a benchmark problem and a very good agreement is seen. The results showed that in areas close to the wall, mixing of materials of inside droplet is performed better, which is important in industrial applications of droplet based flows, especially in pharmaceutical and chemical industries. The results showed that the maximum vorticity magnitude in the K1 branch (the lowest output branch in the system) is 26, 44 and 28 % more than the maximum vorticity magnitude of the branches of K2, K3 and K4 (K4 is the highest output branch is in system). Also, maximum effective viscosity in the K1 branch is 27, 29 and 24 % less than the maximum effective viscosity in the K2, K3 and K4 branches, respectively. Therefore, K1 branch has the best performance in mixing of the material of inside droplet among the output branches. It was also revealed that the pressure of inside of droplet (both before and after breakup) is constant along the channel width.

کلیدواژه‌ها English

Droplet
Non-Newtonian Fluid
Breakup
Network junction
Numerical simulation
VOF
[1] B. L. Khoo, G. Grenci, Y. B. Lim, S. C. Lee, J. Han, C. T. Lim, Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device, Nature protocols, Vol. 13, pages 34-58, (2018).
[2] Q. Xiong et al., Magnetic nanochain integrated microfluidic biochips, NATURE COMMUNICATIONS, Vol. 9, No. 1743, (2018).
[3] F. S. Ruggeri et al., Microfluidic deposition for resolving single molecule protein architecture and heterogeneity, NATURE COMMUNICATIONS, Vol. 9, No. 3890, (2018).
[4] E. Reátegui et al., Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles, NATURE COMMUNICATIONS, Vol. 9, No. 175, (2018).
[5] A. M. Ortega-Prieto et al., 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection, NATURE COMMUNICATIONS, Vol. 9, No. 682, (2018).
[6] N. Ollivier, T. Toupy, R. C. Hartkoorn, R. Desmet, J. C. M. Monbaliu, O. Melnyk, Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides, NATURE COMMUNICATIONS, Vol. 9, No. 2847, (2018).
[7] H. M. Kang et al., Multiplexed droplet single-cell RNA-sequencing using natural genetic variation, Nature biotechnology, doi:10.1038/nbt.4042, (2017).
[8] L. D. Maio, F. Dunlop, Sessile Drop on Oscillating Incline. Journal of Applied Fluid Mechanics, Vol. 11, No. 6, (2018).
[9] J. Q. Feng, A Computational Study of High-Speed Microdroplet Impact onto a Smooth Solid Surface, Journal of Applied Fluid Mechanics, Vol. 10, No. 1, (2017).
[10] B. Mondal, D. Chatterjee, Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel, Journal of Applied Fluid Mechanics, Vol. 9, No. 3, (2016).
[11] M. Ashar, D. Arlov, F. Carlsson, F. Innings, R. Andersson, Single droplet breakup in a rotor-stator mixer, Chemical Engineering Science, doi: 10.1016/j.ces.2018.02.021, (2018).
[12] A. Kiani Moqadam, A. Bedram, M. H. Hamedi, A Novel Method (T-Junction with a Tilted Slat) for Controlling Breakup Volume Ratio of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, Vol. 11, No. 1, pp. 1255-1265, (2018).
[13] Y. Jung, T. Do, U. S. Choi, S. Choi, Understanding Uniform, Fast and Scalable Buoyancy-Driven Macro-Sized Drop Generations, Langmuir, doi: 10.1021/acs.langmuir.8b03613, (2019).
[14] M. M. Rahman, W. Lee, A. Iyer, S. J. Williams, Viscous resistance in drop coalescence, Physics of Fluids, Vol. 31, No. 012104, (2019).
[15] F. Ahmadi, K. Samlali, P. Q. N. Vo, S. C. C. Shih, An integrated droplet-digital microfluidic system for on-demand droplet creation mixing incubation and sorting, Lab on a Chip, Vol. 19, pages 524-535, (2019).
[16] S. H. Yang, J. Parka, J. R. Youn, Y. S. Song, Programmable microfluidic logic device fabricated with shape memory polymer, Lab on a Chip, doi: 10.1039/C8LC00627J, (2018).
[17] W. Du, T. Fu, Y. Duan, C. Zhu, Y. Ma, H. Z. Li, Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device, Chemical Engineering Science, doi: 10.1016/j.ces.2017.10.019, (2017).
[18] Y. Liu, J. Yue, S. Zhao, C. Yao, G. Chen, Bubble splitting under gas-liquid-liquid three-phase flow in a double T-junction microchannel, AIChE Journal, Vol. 64, No. 1, (2018).
[19] Z. Liu, J. Zhao, Y. Pang, X. Wang, Generation of droplets in the T-junction with a constriction microchannel, Microfluidics and Nanofluidics, Vol. 22, No. 124, (2018).
[20] L. Kahouadji et al., Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front‑tracking scheme, Microfluidics and Nanofluidics, Vol. 22, No. 126, (2018).
[21] X. Sun, C. Zhu, T. Fu, Y. Ma, H. Z. Li, Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction, Chemical Engineering Science, doi: 10.1016/j.ces.2018.05.027, (2018).
[22] A. E. M. Mora, A. L. F. L. Silva, S. M. M. L. Silva, Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM, Chemical Engineering Science, doi: 10.1016/j.ces.2018.11.020, (2018).
[23] A. Bedram, A. Moosavi, Breakup of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, Vol. 6, No. 1, pp. 81-86, (2013).
[24] T. Fu, Y. Ma, H. Z. Li, Hydrodynamic Feedback on Bubble Breakup at a T-junction Within an Asymmetric Loop, AIChE Journal, Vol. 60, No. 5, (2014).
[25] A. Bedram, A. Moosavi, Droplet breakup in an asymmetric microfluidic T junction, Eur. Phys. J. E, Vol. 34, Issue 78, (2011).
[26] A. Bedram, A. E. Darabi, A. Moosavi, S. Kazemzade, Numerical Investigation of an Efficient Method (T-Junction With Valve) for Producing Unequal-Sized Droplets in Micro- and Nano-Fluidic Systems, Journal of Fluids Engineering, Vol. 137, No. 031202, (2015).
[27] A. Bedram, A. Moosavi, S. Kazemzade Hannani, Analytical relations for long-droplet breakup in asymmetric T junctions, PHYSICAL REVIEW E, Vol. 91, No. 053012, (2015).
[28] B. Rostami, G. L. Morini, Generation of Newtonian droplets in Newtonian and non-Newtonian carrier flows in micro T-junctions under opposed-flow configuration, Journal of Non-Newtonian Fluid Mechanics, Volume 281, 104297, (2020).
[29] V. L. Wong, K. Loizou, P. L. Lau, R. S. Graham, B. N. Hewakandamby, Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method, Chemical Engineering Science, doi: 10.1016/j.ces.2017.08.027, (2017).
[30] T. Fu, Y. Ma, D. Funfschilling, H. Z. Li, Bubble formation in non-Newtonian fluids in a microfluidic T-junction, Chemical Engineering and Processing, Vol. 50, pages 438–442, (2011).
[31] S. G. Sontti, A. Atta, CFD analysis of microfluidic droplet formation in non–Newtonian liquid, Chemical Engineering Journal, doi: 10.1016/j.cej.2017.07.097, (2017).
[32] E. Chiarello, A. Gupta, G. Mistura, M. Sbragaglia, M. Pierno, Droplet breakup driven by shear thinning solutions in a microfluidic T-junction, Phys. Rev. Fluids, Vol. 2, No. 123602, (2017).
[33] B. Rostami, G. L. Morini, Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction, International Journal of Multiphase Flow, doi: 10.1016/j.ijmultiphaseßow.2018.03.024, (2018).
[34] Leshansky A.M., L.M. Pismen, Breakup of drops in a microfluidic T-junction. Physics of Fluids, Vol. 21, 023303, (2009).
[35] Adel M. Hemeida, "Rheological Behavior of Saudi Crude Oils", Journal of King Saud University Engineering Sciences (1), pp. 181-194, (1990).
[36] S. A. Beg , M. B. Amin & I. Hussain, "CHARACTERIZATION OF ARAB BERRI (EXTRA LIGHT) CRUDE FRACTIONŞ WITH EMPHASIS ON KINEMATIC VISCÓSITY-TEMPERATURE BEHAVIOR", Fuel Science and Technology International, 6:3, 291-308, (1988), DOI: 10.1080/08843758808915887
[37] Sivabalan Sakthivel, Sugirtha Velusamy, Ramesh L. Gardas, Jitendra S. Sangwai, "Adsorption of aliphatic ionic liquids at low waxy crude oil–waterinterfaces and the effect of brine", Colloids and Surfaces A: Physicochem. Eng. Aspects 468, 62–75, (2015).
[38] Ronaldo G. dos Santos, Rahoma S. Mohamed, Antonio C. Bannwart, Watson Loh, "Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water", Journal of Petroleum Science and Engineering 51, 9-16, (2006).
[39] Liantang Li, Jisong Zhang, Kai Wang, Jianhong Xu, and Guangsheng Luo, "Droplet Formation of H2SO4/Alkane System in a T-junction Microchannel: Gravity Effect", AIChE Journal, Volume 62, Issue 12, 4564-4573, (2016).
[40] Dodge F. T., Garza L. R., "Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravity", Journal of Applied Mechanics, vol. 34, issue 3, p. 555, (1967).
[41] Jensen, M. J., “Bubbles in Microchannels,” M.Sc. thesis, Technical University of Denmark, Lyngby, Denmark, (2002).
[42] B. Dalai, S.K. Dash, S.K. Singh, B.B. Swain, "1H NMR and acoustic response of binary mixtures of an
organophosphorous extractant with 1-alkanols (C1–C4, C8)", Journal of Molecular Liquids 208, 151–159, (2015).
[43] Pandey, J D, Sanguri Vinay, Yadav, M K, Singh Aruna, "Intermolecular free length and free volume of pure liquids at varying temperatures and pressures", Indian Journal of Chemistry, Vol.47A, pp. 1020-1025, (2008).
[44] Ali Anwar, Nain Anil Kumar, Sharma Vinod Kumar, Ahmad Shakil, "Molecular interactions in binary mixtures of tetrahydrofuran with alkanols (C6,C8,C10): An ultrasonic and volumetric study", Indian Journal of Pure & Applied Physics, Vol.42, pp. 666-673, (2004).
[45] White F. M., (2011), "Fluid mechanics", 7th edition, Mcgraw-Hill Press, (Eq. 4.32).