مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر تغییر شکل پلاستیک شدید به روش فورج چند جهته بر خواص مکانیکی کامپوزیت SiP/ZA22 بهسازی شده توسط تیتانیم

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مواد، دانشگاه بین المللی امام خمینی
2 گروه مهندسی مواد دانشگاه بین المللی امام خمینی (ره)
3 گروه مهندسی مواد، دانشگاه بین المللی امام خمینی (ره)
چکیده
هدف از انجام تحقیق حاضر، بررسی تاثیر بهسازی شیمیایی توسط تیتانیم و فرایند فورج چند جهته (MDF)، بر ریزساختار و خواص مکانیکی کامپوزیت­ SiP/ZA22 حاوی 4 و 8 درصد وزنی سیلیسیم است. فرآیند فورج در دمای 100 درجه سانتیگراد انجام شد و نمونه­ها در معرض دو و پنج پاس MDF قرار گرفتند. بر اساس نتایج، بهسازی کامپوزیت توسط تیتانیم موجب ظریف شدن شبکه دندریتی درشت اولیه، کاهش ابعاد ذرات سیلیسیم اولیه (SiP) و کاهش اندازه دانه آن می­شود. فرایند MDF نیز ضمن حذف تدریجی ساختار دندریتی، موجب کاهش ابعاد و توزیع ظریف ذرات SiP و تخلخل­ها در ریزساختار می­شود. بر اساس نتایج آنالیز تصویری، در کامپوزیت­های حاوی 4 و 8 درصد وزنی سیلیسیم، اندازه متوسط ​​ذرات SiP پس از 5 پاس فورج، از حدود 25 و 30 میکرومتر به ترتیب به حدود 6 و 7 میکرومتر می­رسد. نتایج حاصل از خواص مکانیکی نیز حاکی از کار نرمی کامپوزیت­ها طی MDF است به گونه­ای که ­سختی و استحکام کششی کامپوزیت پایه پس از 2 پاس MDF به ترتیب حدود 30 و 25 درصد کاهش یافته و درصد ازدیاد طول و چقرمگی آن به ترتیب حدود 120 و 325 درصد افزایش می­یابند. حضور ذرات سیلیسیم به حفظ سختی و استحکام کامپوزیت پس از MDF کمک می­کند به گونه­ای که پس 2 پاس MDF، میزان افت سختی و استحکام کششی کامپوزیت بهسازی شده حاوی 4 درصد وزنی سیلیسیم، به ترتیب حدود 18 و 2 درصد است اما درصد ازدیاد طول و چقرمگی آن به ترتیب حدود 25 و 175 درصد بهبود می­یابند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of severe plastic deformation by multidirectional forging on mechanical properties of Ti modified SiP/ZA22 composite

نویسندگان English

Davood Yousefi 1
Reza Taghiabadi 2
M.H. Shaeri 3
1 Department of Materials Science, Imam Khomeini International University
2 Department of Materials Science, Imam Khomeini International University, Qazvin, IRAN
3 Department of Materials Science, Imam Khomeini International University
چکیده English

In this study, the effect of multidirectional forging (MDF) was studied on the microstructure and mechanical properties of Ti-modified SiP/ZA22 composite containing 4 and 8 wt. % Si. The forging process was performed at 100 °C by two and five passes. Based on the obtained results, Ti modification refined the coarse primary dendrites, and reduced the size of primary Si (SiP) particle as well as grains. Applying MDF also gradually eliminated the dendritic structure, promoted fine distribution of SiP particles, second phases, and porosities in the microstructure. According to the image analysis results, the average size of SiP particles in as-cast composite reduced from 25 and 30 μm to about 6 and 7 μm, respectively in 5-pass MDFed composites containing 4 and 8 wt. % Si. The mechanical properties results also showed work softening during the MDF where after two-pass MDF the hardness and tensile strength of the base sample reduced by 30 and 25%, while its elongation and toughness improved by 120 and 325%, respectively. In MDFed composites, the presence of SiP particles maintains the hardness and strength. According to the results, in the case of 2-pass MDFed composite containing 4 wt. % Si the hardness and tensile strength reduced by 18 and 2%, respectively, but the elongation and toughness increased by 25 and 175%, respectively.

کلیدواژه‌ها English

Zn-22Al alloy
Composite
Silicon
Titanium
Multidirectional forging
Mechanical properties
Severe plastic deformation
1. Arif M, Omar M, Muhamad N, Syarif J, Kapranos P. Microstructural evolution of solid-solution-treated Zn–22Al in the semisolid state. Journal of Materials Science & Technology. 2013;29(8):765-74.
2. Krajewski W, Greer A, Piwowarski G, Krajewski P, editors. Property enhancement by grain refinement of zinc-aluminium foundry alloys. IOP Conference Series: Materials Science and Engineering; 2016; 117:012004, http://dx.doi.org/10.1088/1757-899X/117/1/012004
3. Zaid AI, Al-Hunetti N, Eyal-Awwad K, editors. Effect of molybdenum addition to ZA22 grain refined by titanium in the cast and after pressing by ECAP. IOP Conference Series: Materials Science and Engineering; 2016; 146:012024. http://dx.doi.org/10.1088/1757-899X/146/1/012024
4. Apelian D, Paliwal M, Herrschaft D. Casting with zinc alloys. Journal of Metals, 1981;33(11):12-20.
5. BK P. Effects of silicon addition and test parameters on sliding wear characteristics of zinc-based alloy containing 37.5% aluminium. Materials Transactions, JIM. 1997;38(8):701-6.
6. Savaşkan T, Aydıner A. Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys. Wear. 2004;257(3-4):377-88.
7. Savaşkan T, Bican O. Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn–40Al–2Cu–(0–5) Si alloys. Materials Science and Engineering: A. 2005;404(1-2):259-69.
8. Babushkina EA, Belokopytova LV, Grachev AM, Meko DM, Vaganov EA. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Regional Environmental Change. 2017;17(6):1725-37.
9. Yousefi D, Taghiabadi R, Shaeri M, Ansarian I. Microstructural evolution and mechanical properties of multi-directionally forged Si P/ZA22 composite. Archives of Civil and Mechanical Engineering. 2020;20(4):1-13.
10. Sharath P, Udupa KR, Kumar GP. Effect of multi directional forging on the microstructure and mechanical properties of Zn-24 wt% Al-2 wt% Cu alloy. Transactions of the Indian Institute of Metals. 2017;70(1):89-96.
11. Ansarian I, Shaeri M, Ebrahimi M, Minárik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. Journal of Alloys and Compounds. 2019;776:83-95.
12. Ebrahimi M. Utilization of multi directional forging for fabrication of ultrafine-grained pure titanium. Modares Mechanical Engineering. 2018;18(2):371-82. [Persian]
13. Mozafary H, Akbaripanah F, Nourbakhsh S. Effect of Multidirectional Forging on Microstructures and Mechanical Properties of Nano-SiC Reinforced AZ31 Nanocomposites. Modares Mechanical Engineering. 2019;19(4):981-9. [Persian]
14. Zarei Z, Talafi Noghni M, Shaeri M, Ansarian I. Microstructure, Mechanical, and Electrical Properties of Cu-30Zn Alloys Produced by Multi-Directional Forging. Modares Mechanical Engineering. 2019;19(8):1943-52. [Persian]
15. Ansarian I, Shaeri M. Effect of Grain Size Reduction thruogh Multi Directional Forging Process on Corrosion and Wear Properties of Commercially Pure Titanium. Modares Mechanical Engineering. 2020;20(3):623-36. [Persian]
16. Anjan B, Kumar GP. Microstructure and mechanical properties of ZA27 based SiC reinforced composite processed by multi directional forging. Materials Research Express. 2018;5(10):106523.
17. Yousefi D, Taghiabadi R, Shaeri M, Abedinzadeh P. Enhancing the mechanical properties of Si particle reinforced ZA22 composite by Ti–B modification. International Journal of Metalcasting. 2020:1-10.
18. Pollard W, Pickwick K, Jubb J, Packwood R. The grain refinement of zinc-aluminum alloys by titanium. Canadian Metallurgical Quarterly. 1974;13(4):535-43.
19. Taylor R, McClain S, Berry J. Uncertainty analysis of metal-casting porosity measurements using Archimedes' principle. International Journal of Cast Metals Research. 1999;11(4):247-57.
20. Taghiabadi R, Fayegh A, Pakbin A, Nazari M, Ghoncheh M. Quality index and hot tearing susceptibility of Al–7Si–0.35 Mg–xCu alloys. Transactions of Nonferrous Metals Society of China. 2018;28(7):1275-86.
21. Purcek G, Altan BS, Miskioglu I, Ooi PH. Processing of eutectic Zn–5% Al alloy by equal-channel angular pressing. Journal of Materials Processing Technology. 2004;148(3):279-87.
22. Purcek G, Saray O, Karaman I, Kucukomeroglu T. Effect of severe plastic deformation on tensile properties and impact toughness of two-phase Zn–40Al alloy. Materials Science and Engineering: A. 2008;490(1-2):403-10.
23. Yang H, Dong E, Zhang B, Yuan Y, Shu S. Fabrication and characterization of in situ synthesized SiC/Al composites by combustion synthesis and hot press consolidation method. Scanning. 2017;2017:1-11.
24. Das B, Roy S, Rai RN, Saha S. Development of an in-situ synthesized multi-component reinforced Al–4.5% Cu–TiC metal matrix composite by FAS technique–Optimization of process parameters. Engineering Science and Technology, an International Journal. 2016;19(1):279-91.
25. Aikin R. The mechanical properties of in-situ composites. JOM. 1997;49(8):35-9.
26. Zhu X, Jiang W, Li M, Qiao H, Wu Y, Qin J, et al. The effect of Mg adding order on the liquid structure and solidified microstructure of the Al-Si-Mg-P alloy: An experiment and ab initio study. Metals. 2015;5(1):40-51.
27. Wang F, Eskin D, Mi J, Connolley T, Lindsay J, Mounib M. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Materialia. 2016;116:354-63.
28. Kashayp K, Chandrashekar T. Effects and mechanisms of grain refinement in aluminum alloys. Bulletin of Materials Science. 2001;24(4):345-53.
29. Ding W, Xia T, Zhao W, Xu Y. Effect of Al–5Ti–C master alloy on the microstructure and mechanical properties of hypereutectic Al–20% Si alloy. Materials. 2014;7(2):1188-200.
30. Sharath P, Udupa KR, Kumar GP. Effect of multi directional forging on impression creep behavior of Zn-24Al-2Cu alloy. Materials Today: Proceedings. 2018;5(9):18211-20.
31. Demirtas M, Purcek G, Yanar H, Zhang Z, Zhang Z. Effect of different processes on lamellar-free ultrafine grain formation, room temperature superplasticity and fracture mode of Zn–22Al alloy. Journal of Alloys and Compounds. 2016;663:775-83.
32. Kawasaki M, Langdon TG. Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation. Materials transactions. 2008:0710090218-.
33. Gupta M, Ling S. Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique. Journal of Alloys and Compounds. 1999;287(1-2):284-94.
34. Warmuzek M. Aluminum-silicon casting alloys: an atlas of microfractographs. Materials Park, OH, USA: ASM international; 2004.
35. Lu D, Jiang Y, Guan G, Zhou R, Li Z, Zhou R. Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. Journal of Materials Processing Technology. 2007;189(1-3):13-8.
36. Zhang NX, Kawasaki M, Huang Y, Langdon TG, editors. The significance of self-annealing in two-phase alloys processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering; 2014; 63:012126. http://dx.doi.org/10.1088/1757-899X/63/1/012126