مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل انرژی و اگزرژی یک سلول فتوولتائیک 190 واتی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 پژوهشکده توسعه و بهینه سازی فناوری های انرژی، پژوهشگاه صنعت نفت
2 پژوهشگاه صنعت نفت
3 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران
چکیده
در این مقاله عملکرد یک پنل خورشیدی 190 واتی، واقع در پژوهشگاه صنعت نفت در شهر تهران، از دیدگاه انرژی و اگزرژی مطالعه و ارزیابی می‌شود. به منظور مدلسازی و تعیین مشخصه‌های الکتریکی سیستم نظیر ولتاژ مدار باز، جریان اتصال کوتاه، مقاومت­های موجود در سیستم، ویژگی­های نقطه­ بیشترین توان و استخراج منحنی­های مشخصه الکتریکی، یک کد کامپیوتری توسعه داده شده است. پارامترهای عملیاتی الکتریکی سیستم و شرایط محیطی نظیر میزان تشعشع، سرعت باد و دمای محیط نیز به صورت تجربی در یکی از روزهای اردیبهشت ماه اندازه­گیری و ثبت شده است. همچنین برای اعتبار­سنجی مدلسازی، نتایج حاصل از آن با داده­های گزارش شده توسط سازنده و داده­های تجربی، مقایسه شده است. نتایج این پژوهش نشان می­دهد که بازده انرژی در طول مدت مطالعه (ساعت 7:30 تا 17:30) از 22/11 تا 94/13 درصد متغیر بوده و به طور میانگین برابر 19/13 درصد است. بازده اگزرژی نیز در طول این مدت از 77/14 تا 66/16 درصد متغیر است و به طور میانگین مقداری برابر با 62/15 درصد دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Energy and Exergy Analysis of 190 W Photovoltaic Cell

نویسندگان English

Mohammad Mazidi Sharfabadi 1
Mohammad Iman Ghiasi 2
Ali Seraj 3
1 Development and Optimization of Energy Technologies Division, Research Institute of Petroleum Industry (RIPI)
2 Research Institute of Petroleum Industry (RIPI)
3 Faculty of Mechanical Engineering, University of Tehran
چکیده English

In this paper, the performance of a typical 190 W photovoltaic cell, located in Research Institute of Petroleum Industry, Tehran, Iran, has been studied and evaluated from the energy and exergy point of view. A computer code has been developed for modeling and determining the electrical characteristics of the system such as open circuit voltage, short circuit current, system resistances, maximum power point properties and characteristic curves. The operational and electrical parameters of the system and the environmental conditions such as solar radiation, wind speed and ambient temperature have been experimentally measured and logged on one typical day of May. For the validation of model, the results obtained from the model have been compared with the data reported by the manufacturer as well as the experimental data. The results show that the energy efficiency varies from 11.22 to 13.94 percent during the study period (7:30 AM to 5:30 PM) and its average is equal to 13.19 percent. The exergy efficiency also varies from 14.77 to 16.66 percent during the study period and its average is 15.62 percent.

کلیدواژه‌ها English

Photovoltaic Cell
Characteristic Curves
Energy efficiency
Exergy efficiency
Solar Plant
[1] Abdolalipouradl M, Khalilarya SH, Jafarmadar S. the thermodynamic analysis of a novel integrated transcritical CO2 with Kalina 11 cycles from Sabalan geothermal wells. Modares mechanical engineering ,2019:19(2):335-346.
[2] Abdolalipouradl, M, Khalilarya S, Mohammadkhani F. Hydrogen production using proposed cycle from Sabalan geothermal wells via proton exchange membrane electrolysis. Modares mechanical engineering. 2020:20(2):267-278.
[3] Mishra RK, Tiwari GN. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar energy. 2013 Apr 1;90:58-67.
[4] Lazaroiu GC, Longo M, Roscia M, Pagano M. Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption. Energy Conversion and Management. 2015 Mar 1;92:143-8.
[5] Sudhakar K, Srivastava T. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy. 2014 Jan 2;35(1):51-7.
[6] Aoun N, Nahman B, Chenni R. Study of Experimental Energy and Exergy of mono-crystalline PV Panel in Adrar Region, Algeria. Int J Sci Eng Res. 2014;5(10):585-9.
[7] Rahman MM, Hasanuzzaman M, Abd Rahim N. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. Journal of cleaner production. 2017 Feb 1;143:912-24.
[8] Bayrak F, Ertürk G, Oztop HF. Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of cleaner production. 2017 Oct 15;164:58-69.
[9] Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy. 2018 May 1;165:167-77.
[10] Sukumaran S, Sudhakar K. Performance analysis of solar powered airport based on energy and exergy analysis. Energy. 2018 Apr 15;149:1000-9.
[11] Karathanassis IK, Papanicolaou E, Belessiotis V, Bergeles GC. Dynamic simulation and exergetic optimization of a Concentrating Photovoltaic/Thermal (CPVT) system. Renewable Energy. 2019 May 1;135:1035-47.
[12] Zhang H, Liang K, Chen H, Gao D, Guo X. Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study. Energy. 2019 Jun 15;177:66-76.
[13] Li Z, Ji J, Yuan W, Song Z, Ren X, Uddin MM, Luo K, Zhao X. Experimental and numerical investigations on the performance of a G-PV/T system comparing with A-PV/T system. Energy. 2020 Mar 1;194:116776.
[14] Yazdanifard F, Ameri M, Ebrahimniai Bajestan E, Investigating the effects of various parameters on the performance of a water-based photovoltaic/thermal system, Journal of energy engineering & management, 2016: 6(2): 46-59. (in Persian)
[15] Jahanshah F, Hashemi A, Jahanshah F, Comparison of solar PV/T panels in terms of design and performance, Journal of renewable and new energy, 2018:2: 39-48. (in Persian)
[16] Shakouri M, Noorpoor A, Golzari S, Zamen M, Energy simulation and parametric analysis of water cooled photovoltaic/thermal system, Amirkabir journal of mechanical engineering, 2018:50(6):1361-1374. (in Persian)
[17] Duffie J. A and WA Beckman, Solar Engineering of Thermal Processes: John Willey and Sons.
[18] Sahin AD, Dincer I, Rosen MA. Thermodynamic analysis of solar photovoltaic cell systems. Solar energy materials and solar cells. 2007 Jan 23;91(2-3):153-9.
[19] Petela R. Exergy of undiluted thermal radiation. Solar energy. 2003 Jun 1;74(6):469-88.
[20] Boyle G. Renewable energy: power for a sustainable future. Oxford University Press; 1996.
[21] Watmuff JH, Charters WW, Proctor D. Solar and wind induced external coefficients-solar collectors. cmes. 1977 Jun:56.
[22] www.solarfun-power.com
[23] Singh P, Ravindra NM. Temperature dependence of solar cell performance—an analysis. Solar energy materials and solar cells. 2012 Jun 1;101:36-45.
[24] Al-Khazzar AA. Behavior of four Solar PV modules with temperature variation. International journal of renewable energy research. 2016 Sep 6;6(3).
[25] Energy–Principles SP. of Thermal Collection & Storage. SP Sukhatme, JK Nayak. 2009.