مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل فرآیند شروع نوسانات خوبه خودی در موتور گرماصوتی موج ایستا به کمک روش تجربی و روش حل عددی بهبود یافته

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی مقطع دکتری دانشگاه تربیت مدرس
2 استاد دانشگاه تربیت مدرس
3 استادیار پژوهشگاه هوافضا
4 دانشجوی دکتری دانشگاه تربیت مدرس
چکیده
موتور گرماصوتی یک ابزار جهت بازیابی انرژی است که با استفاده از ویژگی حمل انرژی به کمک امواج صوتی، امکان تولید توان صوتی از انرژی حرارتی را فراهم می­کند. هرچند ساخت موتورهای گرماصوتی به جهت نداشتن قطعات متحرک، کار چندان دشواری نیست، اما محققان بسیاری همواره تلاش نموده­اند تا اختلاف دمای مورد نیاز جهت راه اندازی موتورهای گرماصوتی را کاهش دهند تا این دستگاه در اکثر صنایع مورداستفاده قرارگیرد. جهت بررسی شرایط شروع سیستم، تغییرات دما در بخش استک یک موتور گرماصوتی موج ایستا مورد بررسی قرار گرفت. بررسی عددی تغییرات دما در طول استک، به کمک معادلات گرماصوتی رات صورت گرفت. محاسبه دما در طول استک به صورت لحظه­ای صورت می­گرفت که این روند تا لحظه برقراری تعادل حرارتی در سیستم ادامه می­یافت. جهت اعتبار سنجی منحنی­های دمای به­دست آمده در زمان­های مختلف، موتور گرماصوتی موج ایستا با یک انتهای باز طراحی و ساخته شد. این موتور گرماصوتی قادر به نمایش دما به صورت لحظه­ای در طول استک با آرایش صفحات موازی بود. داده­های حاصل از تست­های تجربی و نمودارهای تغییرات دمای منتجه از روش حل عددی، مطابقت خوبی را برای فرآیند­ شروع عملکرد سیستم با یک­دیگر نشان دادند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis of the Onset Process of Spontaneous Oscillations in a Standing Wave Thermoacoustic Engine, Using the Experimental Method and an Improved Numerical Solution Method

نویسندگان English

Alireza Moradi 1
fathollah ommi 2
Zoheir Saboohi 3
mohsen bahrami 4
1 PhD student of Tarbiatmodares university
2 professor of tarbiat modares university
3 assistant professor of aerospace research institute
4 PhD student of tharbiat modares university
چکیده English

Thermoacoustic engine is an energy conversion device that uses the energy carrying capacity of sound waves to generate sound power from thermal energy. Although it is not difficult to build thermoacoustic engines due to having no moving parts, many researchers have always tried to reduce the temperature difference required to run thermoacoustic engines, so that these devices can be used in most industries. To investigate the onset conditions of the system, temperature changes in the stack section of a standing wave Thermoacoustic engine were investigated. Numerical analysis of temperature changes along the stack, was performed using the rotts thermoacoustic equations. The temperature was calculated instantaneously along the stack, and this process continued until the thermal equilibrium was established in the system. A standing wave with an open end was designed and built to validate the temperature curves obtained at different moments. This thermoacoustic engine was able to display the temperature instantaneously along the stack with parallel plates structure. The data obtained from the experimental tests and the temperature changes diagram resulting from the numerical solution method, showed a good agreement with each other for the onset process in the system.

کلیدواژه‌ها English

Thermoacoustic Engine
Standing Wave
stack
Onset Process
Numerical analysis
[1] C. J. Lawn and G. Penelet, “Common features in the thermoacoustics of flames and engines,” Int. J. Spray Combust. Dyn., vol. 10, no. 1, pp. 3–37, 2018, doi: 10.1177/1756827717743911.
[2] Y. KATABIRA and K. HARIU, “Review of the literature on psoriasis.,” Hifuka No Rinsho, vol. 5, no. 1968, pp. 1–9, 1963.
[3] C. Sondhauss, “Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. der Phys. und Chemie, vol. 155, no. 1, pp. 1–34, 1850, doi: 10.1002/andp.18501550102.
[4] L. R. W., “The Theory of Sound,” Nature, vol. 58, no. 1493, pp. 121–122, Jun. 1898, doi: 10.1038/058121a0.
[5] N. Rott, “Damped and thermally driven acoustic oscillations in wide and narrow tubes,” Zeitschrift für Angew. Math. und Phys. ZAMP, vol. 20, no. 2, pp. 230–243, 1969, doi: 10.1007/BF01595562.
[6] W. P. Arnott, H. E. Bass, and R. Raspet, “General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections,” J. Acoust. Soc. Am., vol. 90, no. 6, pp. 3228–3237, Dec. 1991, doi: 10.1121/1.401432.
[7] G. W. Swift, “Thermoacoustic engines,” J. Acoust. Soc. Am., vol. 84, no. 4, pp. 1145–1180, Oct. 1988, doi: 10.1121/1.396617.
[8] A. A. Atchley, H. E. Bass, T. J. Hofler, and H.-T. Lin, “Study of a thermoacoustic prime mover below onset of self-oscillation,” 1992. [Online]. Available: http://asadl.org/terms.
[9] A. A. Atchley, “Standing wave analysis of a thermoacoustic prime mover below onset of self‐oscillation,” J. Acoust. Soc. Am., vol. 92, no. 5, pp. 2907–2914, 1992, doi: 10.1121/1.404355.
[10] J. P. Clark, W. C. Ward, and G. W. Swift, “Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC),” J. Acoust. Soc. Am., vol. 122, no. 5, p. 3014, 2007, doi: 10.1121/1.2942768.
[11] N. Rott, Nikolaus rott, vol. 20. 1980.
[12] L. M. Qiu, B. H. Lai, Y. F. Li, and D. M. Sun, “Numerical simulation of the onset characteristics in a standing wave thermoacoustic engine based on thermodynamic analysis,” Int. J. Heat Mass Transf., vol. 55, no. 7–8, pp. 2200–2203, 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.043.
[13] M. E. Poese and S. L. Garrett, “Performance measurements on a thermoacoustic refrigerator driven at high amplitudes,” J. Acoust. Soc. Am., vol. 107, no. 5, pp. 2480–2486, 2000, doi: 10.1121/1.428635.
[14] A. Cox, “Natural Engines,” Phys. Today, vol. 38, no. 8, pp. 50–58, 1985, doi: 10.1063/1.880985.
[15] S. Zhou and Y. Matsubara, “Experimental research of thermoacoustic prime mover,” Cryogenics (Guildf)., vol. 38, no. 8, pp. 813–822, 1998, doi: 10.1016/S0011-2275(98)00055-1.
[16] G. Chen, G. Krishan, Y. Yang, L. Tang, and B. Mace, International Journal of Heat and Mass Transfer “Numerical investigation of synthetic jets driven by thermoacoustic standing waves,” Int. J. Heat Mass Transf., vol. 146, p. 118859, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118859.
[17] A. Piccolo, “Numerical Study of Entropy Generation Within Thermoacoustic Heat Exchangers with Plane Fins,” no. July, pp. 8228–8239, 2015, doi: 10.3390/e17127875.
[18] A. I. A. El-rahman, W. A. Abdelfattah, and M. A. Fouad, International Journal of Heat and Mass Transfer “A 3D investigation of thermoacoustic fields in a square stack,” Int. J. Heat Mass Transf., vol. 108, pp. 292–300, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.12.015.
[19] S. Mergen, E. Yıldırım, and H. Türkoğlu, “Numerical Study on Effects of Computational Domain Length on Flow Field in Standing Wave Thermoacoustic Refrigerators,” Cryogenics (Guildf)., 2018, doi: 10.1016/j.cryogenics.2018.09.012.
[20] O. M. Ilori, A. J. Jaworski, and X. Mao, “Experimental and Numerical Investigations of Thermal Characteristics of Heat Exchangers in Oscillatory Flow,” Appl. Therm. Eng., 2018, doi: 10.1016/j.applthermaleng.2018.07.073.
[21] N. Cao, J. R. Olson, G. W. Swift, and S. Chen, “Energy flux density in a thermoacoustic couple,” J. Acoust. Soc. Am., vol. 99, no. 6, pp. 3456–3464, 1996, doi: 10.1121/1.414992.
[22] H. Ishikawa and D. J. Mee, “Numerical investigations of flow and energy fields near a thermoacoustic couple,” J. Acoust. Soc. Am., vol. 111, no. 2, pp. 831–839, 2002, doi: 10.1121/1.1430687.
[23] A. Piccolo and G. Pistone, “Estimation of heat transfer coefficients in oscillating flows: The thermoacoustic case,” Int. J. Heat Mass Transf., vol. 49, no. 9–10, pp. 1631–1642, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.11.009.
[24] G. W. Swift, “Thermoacoustics,” in Springer Handbook of Acoustics, Springer New York, 2014, pp. 247–263.
[25] P. Aben, “High-Amplitude Thermoacoustic Flow Interacting with Solid Boundaries,” Eindhoven University of Technology Library, 2010.
[26] بهرامی، محسن؛ صبوحی، زهیر؛ امی، فتح‌اله؛ "مدلسازی شروع نوسانات در موتور گرماصوتی به روش همترائی مدار الکتریکی "، پنجمین کنگره انجمن مهندسی صوتیات ایران (ملی)-اص‌ا،1397
[27] A. Piccolo and G. Cannistraro, “Convective heat transport along a thermoacoustic couple in the transient regime,” Int. J. Therm. Sci., vol. 41, no. 11, pp. 1067–1075, 2002, doi: 10.1016/S1290-0729(02)01393-5.
[28] L. Zoontjens, C. Q. Howard, A. C. Zander, and B. S. Cazzolato, “Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness,” Int. J. Therm. Sci., vol. 48, no. 4, pp. 733–746, 2009, doi: 10.1016/j.ijthermalsci.2008.06.007.
[29] L. Zoontjens, C. Q. Howard, A. C. Zander, and B. S. Cazzolato, “Numerical comparison of thermoacoustic couples with modified stack plate edges,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4829–4840, 2008, doi: 10.1016/j.ijheatmasstransfer.2008.02.037.
[30] J. H. Xiao, “Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem,” Cryogenics (Guildf)., vol. 35, no. 1, pp. 15–19, 1995, doi: 10.1016/0011-2275(95)90419-G.
[31] D. Marx and P. Blanc-benon, “Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate,” vol. 45, pp. 163–172, 2005, doi: 10.1016/j.cryogenics.2004.08.007.