مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی مدل‌های نیمه‌تجربی انتقال حرارت برای تعیین شار حرارتی در موتور اشتعال تراکمی مخلوط همگن با سوخت گاز طبیعی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه صنعتی نوشیروانی بابل
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل
3 دانشگاه شهید چمران اهواز، اهواز، ایران
چکیده
احتراق اشتعال تراکمی‌ مخلوط همگن به دلیل بازده حرارتی بالا و تولید اکسیدهای نیتروژن و دوده ناچیز، توجهات بسیاری را به خود جلب کرده است. انتقال حرارت از گازها به دیواره‌های محفظه احتراق تاثیر زیادی بر روی احتراق و فرایند شکل‌گیری آلاینده‌ها در موتور اشتعال تراکمی مخلوط همگن دارد. در این مطالعه برای اولین بار با در نظر گرفتن سوخت گاز طبیعی، از مدل صفربعدی تک‌ناحیه­ای کوپل با سینتیک مفصل شیمیایی برای ارزیابی مدل‌های نیمه‌تجربی انتقال حرارت آناند، وشنی، هوهنبرگ، آسانیس و هنسل جهت تعیین شار حرارتی در موتور اشتعال تراکمی مخلوط همگن استفاده شد. برای این منظور ابتدا مدل سه‌بعدی دینامیک سیالات محاسباتی کوپل با سینتیک مفصل شیمیایی با داده‌های تجربی صحت‌سنجی شد و مدل سه‌بعدی به‌عنوان مرجع و پایه مقایسه برای ارزیابی مدل صفربعدی قرار گرفت. از روش سطح پاسخ به‌منظور بررسی اثر پارامترهای ورودی عملکردی موتور شامل فشار ورودی (5/1 ،25/1 ،1) بار، نسبت هم‌ارزی (7/0 ،5/0 ،3/0) و دور موتور (1400 ،1100 ،800) دوربردقیقه بر پارامترهای خروجی فشار درون سیلندر و شار حرارتی استفاده شد. نتایج مدل‌سازی صفربعدی نشان داد که در بیشتر مواردی که مورد بررسی قرار گرفت مدل آناند بهترین قابلیت را برای پیش‌بینی شار حرارتی ارائه می­دهد. همچنین مدل هوهنبرگ شار حرارتی را بیشتر از مقدار محاسبه شده توسط مدل سه‌بعدی پیش‌بینی می‌کند درحالیکه مدل‌های آسانیس و هنسل شار گرمایی را کمتر از مقدار ارائه شده توسط مدل سه‌بعدی برآورد نمودند. علاوه بر این مدل وشنی نمی‌تواند برای مدل‌کردن شار حرارتی در موتور اشتعال تراکمی مخلوط همگن در این شرایط استفاده شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigations on semi-empirical heat transfer models for heat flux of HCCI engine fueled with natural gas

نویسندگان English

Masoud Rabeti 1
Omid Jahanian 2
Ali akbar Ranjbar 1
Seyed Mohammad Safieddin Ardebili 3
1 Babol Noshirvani University of Technology
2 Department of Mechanical Engineering, Babol Noshirvani University of Technology
3 Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده English

Homogeneous charge compression ignition (HCCI) has attracted lots of attention due to the high thermal efficiency, lower NO­x, and Soot exhaust emissions. Heat transfer from the gases to the combustion chamber walls has effective impact on the combustion process and the formation of engine-out emissions in HCCI engine. In this study for the first time a zero-dimensional single-zone model coupled with detailed chemical kinetics was used to evaluate the semi-empirical heat transfer models of Annand, Woschni, Hohenberg along with Assanis and Hensel to calculate heat flux in an HCCI engine fueled with natural gas. For this purpose, the 3D-CFD model coupled with detailed chemical kinetics was firstly validated by using experimental data, and then the 3D derived model was used as a base model for evaluating zero-dimensional model. Furthermore, the response surface model (RSM) was employed for investigating the effect of input parameters of engine including intake pressure (1, 1.25, and 1.5bar), equivalence ratio (0.3, 0.5, and 0.7), and engine speed (800, 1100, and 1400rpm) on the output parameters i.e., in-cylinder pressure and heat flux. In most cases were assessed, the zero-dimensional simulation results indicated that Annand technique provided the best model for heat flux simulation. Besides, the model of Hohenberg overpredict the heat flux in comparison with the calculated values derived from the 3D model, while Assanis and Hensel models underpredict the heat flux compared with the evaluated value of the 3D model. Furthermore, Woschni’s model cannot be used to model the heat flux in HCCI engine.

کلیدواژه‌ها English

Homogeneous charge compression ignition
Semi-Empirical Heat Transfer Models
Heat Flux
Natural gas
Krishnamoorthi M, Malayalamurthi R, He Z, Kandasamy S. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews. 2019;116:109404.
Du G, Wang Z, Wang D, Wang X, Fu X. Study on the effect of water addition on combustion characteristics of a HCCI engine fueled with natural gas. Fuel. 2020;270:117547.
Bhurat SS, Pandey S, Chintala V, Ranjit PS. Technical barriers and their solutions for deployment of HCCI engine technologies–a review. International Journal of Ambient Energy. 2019:1-4.
Yousefzadeh A, Jahanian O. Using detailed chemical kinetics 3D-CFD model to investigate combustion phase of a CNG-HCCI engine according to control strategy requirements. Energy Conversion and Management. 2017;133:524-34.
Ogink R, Golovitchev V. Gasoline HCCI modeling: Computer program combining detailed chemistry and gas exchange processes. SAE Transactions. 2001:2338-50.
Aleiferis PG, Charalambides AG, Hardalupas Y, Taylor AM, Urata Y. Modelling and experiments of HCCI engine combustion with charge stratification and internal EGR. SAE Technical Paper; 2005.
Rodriguez CF, Mantilla J. Modeling hcci engine combustion coupling cantera to kiva 4. SAE Technical Paper; 2015.
Ezoji H, Shafaghat R, Jahanian O. Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions. Journal of Thermal Analysis and Calorimetry. 2019;135(3):1775-85.
Jahanian O, Jazayeri SA. The Effects of Using Formaldehyde as an Additive on the Performance of an HCCI Engine Fueled with Natural Gas. InASME International Mechanical Engineering Congress and Exposition 2010; 44298, 601-609.
Fathi M, Jahanian O, Ganji DD, Wang S, Somers B. Stand-alone single-and multi-zone modeling of direct injection homogeneous charge compression ignition (DI-HCCI) combustion engines. Applied Thermal Engineering. 2017;125:1181-90.
Namar MM, Jahanian O. Energy and exergy analysis of a hydrogen-fueled HCCI engine. Journal of Thermal Analysis and Calorimetry. 2019;137(1):205-15.
Torregrosa AJ, Olmeda PC, Romero CA, Térmicos M, Valencia UP, De Vera C. Revising engine heat transfer. Journal of Engineering Annals of Faculty of Engineering Hunedoara. 2008;6(3):245-65.
Thermodynamics and Fluid Mechanics Group, Annand WJ. Heat transfer in the cylinders of reciprocating internal combustion engines. Proceedings of the Institution of Mechanical Engineers. 1963;177(1):973-96.
Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical paper; 1967.
Hohenberg GF. Advanced approaches for heat transfer calculations. SAE Transactions. 1979:2788-806.
Chang J, Güralp O, Filipi Z, Assanis D, Kuo TW, Najt P, Rask R. New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux. SAE transactions. 2004:1576-93.
Hensel S, Sarikoc F, Schumann F, Kubach H, Spicher U. Investigations on the heat transfer in HCCI gasoline engines. SAE International Journal of Engines. 2009;2(1):1601-16.
Soyhan HS, Yasar H, Walmsley H, Head B, Kalghatgi GT, Sorusbay C. Evaluation of heat transfer correlations for HCCI engine modeling. Applied Thermal Engineering. 2009;29(2-3):541-9.
Broekaert S, De Cuyper T, Chana K, De Paepe M, Verhelst S. Assessment of empirical heat transfer models for a CFR engine operated in HCCI mode. SAE Technical Paper; 2015.
Broekaert S, De Cuyper T, De Paepe M, Verhelst S. Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine. SAE Technical Paper; 2017.
Broekaert S, De Cuyper T, De Paepe M, Verhelst S. Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine. Applied Energy. 2017;205:1141-50.
Broekaert S. A study of the heat transfer in low temperature combustion engines (Doctoral dissertation, Ghent University).
Nijeweme DO, Kok JB, Stone CR, Wyszynski L. Unsteady in-cylinder heat transfer in a spark ignition engine: experiments and modelling. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2001;215(6):747-60.
Rakopoulos CD, Kosmadakis GM, Pariotis EG. Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation. Applied Energy. 2010;87(5):1612-30.
Decan G, Broekaert S, Lucchini T, D'Errico G, Vierendeels J, Verhelst S. Evaluation of wall heat flux models for full cycle CFD simulation of internal combustion engines under motoring operation. SAE Technical Paper; 2017.
Berni F, Cicalese G, Fontanesi S. A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering. 2017;115:1045-62.
Decan G, Broekaert S, Lucchini T, D’Errico G, Vierendeels J, Verhelst S. Evaluation of wall heat flux calculation methods for CFD simulations of an internal combustion engine under both motored and HCCI operation. Applied Energy. 2018;232:451-61.
Komninos NP, Rakopoulos CD. Heat transfer in hcci phenomenological simulation models: A review. Applied Energy. 2016;181:179-209.
Jahanian O, Jazayeri SA. A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI engine. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles. 2012;67(3):503-15.
Hairuddin AA, Yusaf TF, Wandel AP. Predicting the combustion behaviour of a diesel hcci engine using a zero-dimensional single-zone model. InProceedings of the 11th Australian Combustion Symposium (ACS 2011) 2011; 1(1): 130-133. Combustion Institute, Australian and New Zealand Section.
Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner Jr WC, Lissianski VV. GRI 3.0 Mechanism. Gas Research Institute (http://www. me. berkeley. edu/gri_mech). 1999.
De Cuyper T, Demuynck J, Broekaert S, De Paepe M, Verhelst S. Heat transfer in premixed spark ignition engines part II: Systematic analysis of the heat transfer phenomena. Energy. 2016;116:851-60.
Poorghasemi K, Saray RK, Bahlouli K, Zehni A. 3D CFD simulation of a natural gas fueled HCCI engine with employing a reduced mechanism. Fuel. 2016;182:816-30.