[1] Nurul Fazita MR, Jayaraman K, Bhattacharyya D, Mohamad Haafiz MK, Saurabh C, Hussin M, et al. Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials 2016;9:435. https://doi.org/10.3390/ma9060435.
[2] Oushabi A. The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM): A review. Composites Part B: Engineering 2019;174:107059. https://doi.org/10.1016/j.compositesb.2019.107059.
[3] Hodzic A, Shanks R. Natural Fibre Composites: Materials, Processes and Properties. Woodhead Publishing; 2014.
[4] Nirmal U, Yousif BF, Rilling D, Brevern PV. Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 2010;268:1354–70. https://doi.org/10.1016/j.wear.2010.02.004.
[5] Ravandi M, Teo WS, Tran LQN, Yong MS, Tay TE. The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates. Materials & Design 2016;109:659–69. https://doi.org/10.1016/j.matdes.2016.07.093.
[6] Lee HP, Kureemun U, Ravandi M, Teo WS. Performance of interlaminar flax-carbon hybrids under bending. Procedia Manufacturing 2020;43:658–65. https://doi.org/10.1016/j.promfg.2020.02.134.
[7] Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
[8] Fortea-Verdejo M, Bumbaris E, Burgstaller C, Bismarck A, Lee K-Y. Plant fibre-reinforced polymers: where do we stand in terms of tensile properties? International Materials Reviews 2017;62:441–64. https://doi.org/10.1080/09506608.2016.1271089.
[9] Trujillo E, Moesen M, Osorio L, Van Vuure AW, Ivens J, Verpoest I. Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Composites Part A: Applied Science and Manufacturing 2014;61:115–25. https://doi.org/10.1016/j.compositesa.2014.02.003.
[10] Shekar HSS, Ramachandra M. Green Composites: A Review. Materials Today: Proceedings 2018;5:2518–26. https://doi.org/10.1016/j.matpr.2017.11.034.
[11] Tran LQN, Minh TN, Fuentes CA, Chi TT, Van Vuure AW, Verpoest I. Investigation of microstructure and tensile properties of porous natural coir fibre for use in composite materials. Industrial Crops and Products 2015;65:437–45. https://doi.org/10.1016/j.indcrop.2014.10.064.
[12] Alsaeed T, Yousif BF, Ku H. The potential of using date palm fibres as reinforcement for polymeric composites. Materials & Design 2013;43:177–84. https://doi.org/10.1016/j.matdes.2012.06.061.
[13] Gholami M, Saleh Ahmadi M, Tavanaie M, Khajeh Mehrizi M. Mechanical Properties of Date Palm Fiber Reinforced Polymer Composites: A Review. Basparesh 2017;7:82–93. https://doi.org/10.22063/basparesh.2017.1377.
[14] AL-Oqla FM, Sapuan SM. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 2014;66:347–54. https://doi.org/10.1016/j.jclepro.2013.10.050.
[15] Khiari R, Mhenni MF, Belgacem MN, Mauret E. Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology 2010;101:775–80. https://doi.org/10.1016/j.biortech.2009.08.079.
[16] Pickering K. Properties and Performance of Natural-Fibre Composites. Elsevier; 2008.
[17] Nasser R, Salem M, Hiziroglu S, Al-Mefarrej H, Mohareb A, Alam M, et al. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016;9:374. https://doi.org/10.3390/en9050374.
[18] Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering 2009;40:601–6. https://doi.org/10.1016/j.compositesb.2009.04.018.
[19] Dhakal HN, Ismail SO. Sustainable Composites for Lightweight Applications. 1st edition. Duxford: Woodhead Publishing; 2020.
[20] Putra AEE, Renreng I, Arsyad H, Bakri B. Investigating the effects of liquid-plasma treatment on tensile strength of coir fibers and interfacial fiber-matrix adhesion of composites. Composites Part B: Engineering 2020;183:107722. https://doi.org/10.1016/j.compositesb.2019.107722.
[21] Gholami M, Ahmadi MS, Tavanaie MA, Khajeh Mehrizi M. Effect of oxygen plasma treatment on tensile strength of date palm fibers and their interfacial adhesion with epoxy matrix. Science and Engineering of Composite Materials 2018;25:993–1001. https://doi.org/10.1515/secm-2017-0102.
[22] Huang J-K, Young W-B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 2019;166:272–83.
[23] Zin M hanafee, Mazlan N, Norizan MN. The Effects of Alkali Treatment on the Mechanical and Chemical Properties of Banana Fibre and Adhesion to Epoxy Resin. Science and Technology 2018.
[24] Wong KJ, Yousif BF, Low KO. The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proceedings of the IMechE 2010;224:139–48. https://doi.org/10.1243/14644207JMDA304.
[25] Syduzzaman M, Al Faruque MA, Bilisik K, Naebe M. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings 2020;10:973. https://doi.org/10.3390/coatings10100973.
[26] Shalwan A, Yousif BF. Investigation on interfacial adhesion of date palm/epoxy using fragmentation technique. Materials & Design 2014;53:928–37. https://doi.org/10.1016/j.matdes.2013.07.083.
[27] Oushabi A, Sair S, Oudrhiri Hassani F, Abboud Y, Tanane O, El Bouari A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering 2017;23:116–23. https://doi.org/10.1016/j.sajce.2017.04.005.
[28] Mirabimoghaddam MH. Investigation of Cis Palamfiber on the mechanical properties of Concrete. Journal of Structural and Construction Engineering 2019;0. https://doi.org/10.22065/jsce.2019.168289.1766.
[29] Kashizadeh R, Esfandeh M, Rezadoust AM, Sahraeian R. Physico-mechanical and thermal properties of date palm fiber/phenolic resin composites. Polymer Composites 2019;40:3657–65. https://doi.org/10.1002/pc.25228.
[30] Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Composites Part A: Applied Science and Manufacturing 2006;37:1368–76. https://doi.org/10.1016/j.compositesa.2005.08.016.
[31] Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix. Composites Science and Technology 2004;64:1219–30. https://doi.org/10.1016/j.compscitech.2003.10.001.
[32] Herrera-Franco PJ, Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering 2005;36:597–608. https://doi.org/10.1016/j.compositesb.2005.04.001.
[33] Riedel U. Biocomposites. Polymer Science: A Comprehensive Reference, Elsevier; 2012, p. 295–315. https://doi.org/10.1016/B978-0-444-53349-4.00268-5.
[34] Osorio L, Trujillo E, Van Vuure AW, Verpoest I. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites. Journal of Reinforced Plastics and Composites 2011;30:396–408. https://doi.org/10.1177/0731684410397683.
[35] Bourmaud A, Dhakal H, Habrant A, Padovani J, Siniscalco D, Ramage MH, et al. Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing 2017;103:292–303. https://doi.org/10.1016/j.compositesa.2017.10.017.
[36] Tanzim N, Nbhan S, Liew TH, Chin CW, Yousif BF. ANN for Tribological Applications. Volume 13: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, Lake Buena Vista, Florida, USA: ASMEDC; 2009, p. 13–6. https://doi.org/10.1115/IMECE2009-10161.
[37] Arrakhiz FZ, Malha M, Bouhfid R, Benmoussa K, Qaiss A. Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering 2013;47:35–41. https://doi.org/10.1016/j.compositesb.2012.10.046.
[38] El-Tayeb NSM. Development and characterisation of low-cost polymeric composite materials. Materials & Design 2009;30:1151–60. https://doi.org/10.1016/j.matdes.2008.06.024.
[39] Mohanty AK, Misra M, Drzal LT. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 2001;8:313–43. https://doi.org/10.1163/156855401753255422.
[40] Abdal-hay A, Suardana NPG, Jung DY, Choi K-S, Lim JK. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int J Precis Eng Manuf 2012;13:1199–206. https://doi.org/10.1007/s12541-012-0159-3.
[41] Viel M, Collet F, Lanos C. Development and characterization of thermal insulation materials from renewable resources. Construction and Building Materials 2019;214:685–97. https://doi.org/10.1016/j.conbuildmat.2019.04.139.
[42] Yousif BF, Wong KJ, El-Tayeb NSM. An Investigation on Tensile, Compression and Flexural Properties of Natural Fibre Reinforced Polyester Composites. Volume 3: Design and Manufacturing, Seattle, Washington, USA: ASMEDC; 2007, p. 619–24. https://doi.org/10.1115/IMECE2007-44012.
[43] Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G. Natural Fibers, Biopolymers, and Biocomposites 2005:36.
[44] Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering 1999;30:309–20. https://doi.org/10.1016/S1359-8368(98)00054-7.