مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر اقلیم آب و هوایی بر عملکرد اقتصادی و زیست محیطی توربین بادی به روش ارزیابی چرخه حیات

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه انرژی های نو و محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران
2 دانشکده علوم و فنون نوین، دانشگاه تهران، ایران
3 گروه انرژی های نو و مهندسی محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران
چکیده
افزایش روز افزون مصرف انرژی های تجدید ناپذیری همچون نفت و گاز و کاهش ذخایر آنان، لزوم توجه به منابع پاک و تجدیدپذیر را بیش از پیش ضروری می­سازد. در این شرایط انرژی باد یکی از مطمئن ترین گزینه ها برای تولید انرژی الکتریکی شناخته می­شود. در این پژوهش با هدف ارزیابی تاثیر تغییر اقلیم های آب و هوایی بر مشخصه های اقتصادی و زیست محیطی توربین های بادی یک مدلسازی عددی در نرم افزار متلب، انجام گردید. جهت ارزیابی تاثیرات پارامتر های مذکور به عنوان یک مطالعه موردی این مدلسازی عددی برای پارامترهای بیان شده در 4 شهر ایران شامل شهرهای رشت، تهران، آبادان و سنندج به عنوان نمایندگان اقلیم های اصلی آب و هوایی کشور ایران مورد تجزیه و تحلیل قرار گرفته است. بر اساس نتایج دیدگاه اقتصادی که معرف هزینه تراز شده واحد انرژی تولید شده میباشد، شهر آبادان با هزینه تراز شده 1/04 دلار به ازای هر کیلووات ساعت انرژی به عنوان اقتصادی ترین شهر شناخته شد. همچنین جنبه زیست محیطی تحلیل که بر مبنای روش ارزیابی چرخه حیات بوده، با درنظرگیری مقدار کربن دی اکسید تولیدی در طول چرخه عمر سیستم و قیمت گذاری آن بر مبنای سیاست های جریمه ای، شهر رشت را با اقلیم معتدل مرطوب و با مقدار انتشار 156 کیلوگرم کربن دی اکسید در سال و کمترین هزینه جریمه ای (هزینه سالیانه 2/26 دلار) در میان شهر های دیگر مناسب ترین گزینه نشان داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of Climate Change on Economic and Environmental Performance of Wind Turbine Based on Life Cycle Assessment Method

نویسندگان English

Amirali Saiffodin 1
Seyed Farhan Moosavian 2
Ahamad hajinezhad 3
1 Department of Renewable Energies and Environmental Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
2 Department of Renewable Energies and Environmental Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
3 Department of Renewable Energies and Environmental Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
چکیده English

The increasing consumption of non-renewable energy sources such as oil and gas and reducing their reserves make it more necessary to pay attention to clean and renewable resources. In this situation, wind energy is known as one of the safest options for generating electrical energy. In this study, with the aim of evaluating the impact of climate change on the economic and environmental characteristics of wind turbines, numerical modeling was developed in MATLAB software. In order to evaluate the effects of the mentioned parameters as a case study, this numerical modeling for the parameters expressed in 4 cities of Iran, including Rasht, Tehran, Abadan, and Sanandaj, as the representatives of the main climates of Iran has been analyzed. According to the results of the economic point of view, which represents the Levelized cost of the energy production unit, Abadan was recognized as the most economical case with a Levelized cost of 1.04 $ per kilowatt-hour of energy. Also, the environmental aspect of the analysis, which is based on the life cycle assessment method, considering the amount of carbon dioxide produced during the system life cycle and its pricing based on penalty policies, Rasht with a mild climate and emissions of 156 kg. Carbon dioxide per year and the lowest fine cost (annual cost $ 2.26) showed the most suitable option among other cities.

کلیدواژه‌ها English

Economic analysis
Life Cycle Assessment Method
Wind turbine
Environmental Impact Assessment
[1] S. K. Sansaniwal, V. Sharma, and J. Mathur, "Energy and exergy analyses of various typical solar energy applications: A comprehensive review," Renewable Sustainable Energy Reviews, vol. 82, pp. 1576-1601, 2018.
[2] R. Zahedi, A. Ahmadi, and R. Dashti, "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system," Renewable and Sustainable Energy Reviews, vol. 150, p. 111420, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.rser.2021.111420.
[3] D. Borzuei, S. F. Moosavian, and M. Farajollahi, "On the Performance Enhancement of the Three-Blade Savonius Wind Turbine Implementing Opening Valve," Journal of Energy Resources Technology, vol. 143, no. 5, 2021, doi: 10.1115/1.4049460.
[4] R. Zahedi, A. Ahmadi, and M. Sadeh, "Investigation of the load management and environmental impact of the hybrid cogeneration of the wind power plant and fuel cell," Energy Reports, vol. 7, pp. 2930-2939, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.egyr.2021.05.008.
[5] M. Farajzadeh and A. Taghilo, "The Wind Energy Potential Zoning using GIS and Fuzzy MCDM-based Approach (Study Area: Zanjan Province, Iran)," mdrsjrns, vol. 20, no. 2, pp. 45-60, 2013. [Online]. Available: http://eijh.modares.ac.ir/article-27-1372-en.html.
[6] E. W. E. Association, The economics of wind energy. EWEA, 2009.
[7] M. R. Ghasemi Bousejin, a. jafari, S. S. Mohtasebi, and k. gharali, "Numerical simulation of wind turbine in Manjil wind farm considering wind regime study," (in eng), Modares Mechanical Engineering, vol. 17, no. 9, pp. 75-85, 2017.
[8] N. Keramat Siavash, G. H. Najafi, T. Tavakoli, B. Ghobadian, and E. Mahmoodi, "Ducted wind turbine investigation in a wind tunnel," (in eng), Modares Mechanical Engineering, vol. 19, no. 5, pp. 1297-1305, 2019.
[9] M. Farajzadeh and A. Taghilo, "The Wind Energy Potential Zoning using GIS and Fuzzy MCDM-based Approach (Study Area: Zanjan Province, Iran)," (in eng), The International Journal of Humanities, vol. 20, no. 2, pp. 45-60, 2013.
[10] K. Yaman and G. Arslan, "Modeling, simulation, and optimization of a solar water heating system in different climate regions," Journal of Renewable and Sustainable Energy, vol. 10, no. 2, p. 023703, 2018.
[11] E. Hau, Wind turbines: fundamentals, technologies, application, economics. Springer Science & Business Media, 2013.
[12] P. D. Friedman, "Evaluating economic uncertainty of municipal wind turbine projects," Renewable Energy, vol. 35, no. 2, pp. 484-489, 2010.
[13] Z. Li, F. Boyle, and A. Reynolds, "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, vol. 41, pp. 64-74, 2012.
[14] D. Song et al., "Multi-objective energy-cost design optimization for the variable-speed wind turbine at high-altitude sites," Energy conversion management, vol. 196, pp. 513-524, 2019.
[15] D. G. Caglayan, D. S. Ryberg, H. Heinrichs, J. Linßen, D. Stolten, and M. Robinius, "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, vol. 255, p. 113794, 2019.
[16] J. Schallenberg-Rodriguez, "A methodological review to estimate techno-economical wind energy production," Renewable Sustainable Energy Reviews, vol. 21, pp. 272-287, 2013.
[17] M. S. Uddin and S. Kumar, "Energy, emissions and environmental impact analysis of wind turbine using life cycle assessment technique," Journal of cleaner production, vol. 69, pp. 153-164, 2014.
[18] S. Wang, S. Wang, and J. Liu, "Life-cycle green-house gas emissions of onshore and offshore wind turbines," Journal of cleaner production, vol. 210, pp. 804-810, 2019.
[19] V. Katinas, M. Marčiukaitis, and M. Tamašauskienė, "Analysis of the wind turbine noise emissions and impact on the environment," Renewable Sustainable Energy Reviews, vol. 58, pp. 825-831, 2016.
[20] B. Ghobadian, G. Najafi, H. Rahimi, and T. F. Yusaf, "Future of renewable energies in Iran," Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 689-695, 2009/04/01/ 2009, doi: https://doi.org/10.1016/j.rser.2007.11.010.
[21] M. Bahrami and P. Abbaszadeh, "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, vol. 24, pp. 198-208, 2013/08/01/ 2013, doi: https://doi.org/10.1016/j.rser.2013.03.043.
[22] M. Marefati, M. Mehrpooya, and M. B. Shafii, "Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids," Journal of Cleaner Production, vol. 175, pp. 294-313, 2018.
[23] S. F. Moosavian, D. Borzuei, and A. Ahmadi, "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, vol. 165, pp. 301-320.
[24] M. Shabaniverki, H. Shabaniverki, and H. Babapoor, "An Overview of Wind and Solar Energies in Iran."
[25] M. Satkin, Y. Noorollahi, M. Abbaspour, and H. Yousefi, "Multi criteria site selection model for wind-compressed air energy storage power plants in Iran," Renewable and Sustainable Energy Reviews, vol. 32, pp. 579-590, 2014/04/01/ 2014, doi: https://doi.org/10.1016/j.rser.2014.01.054.
[26] T. Raziei, "Koppen-Geiger Climate Classification of Iran and Investigation of Its Changes during 20th Century," 2017.
[27] M. Ehyaei, A. Ahmadi, and M. A. Rosen, "Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine," Energy conversion management, vol. 183, pp. 369-381, 2019.
[28] W. R. Powell, "An analytical expression for the average output power of a wind machine," Solar Energy, vol. 26, no. 1, pp. 77-80, 1981.
[29] E. Asgari and M. Ehyaei, "Exergy analysis and optimisation of a wind turbine using genetic and searching algorithms," International Journal of Exergy, vol. 16, no. 3, pp. 293-314, 2015.
[30] G. L. J. M. Johnson, KS, "Wind energy systems. Electronic edition," vol. 10, 2001.
[31] M. Majidniya, K. Gharali, and K. Raahemifar, "A Comparison of Off-Grid-Pumped Hydro Storage and Grid-Tied Options for an IRSOFC-HAWT Power Generator," International Journal of Rotating Machinery, vol. 2017, 2017.
[32] M. Faizal, R. Saidur, S. Mekhilef, A. Hepbasli, and I. Mahbubul, "Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO 2 nanofluid," Clean Technologies and Environmental Policy, vol. 17, no. 6, pp. 1457-1473, 2015.
[33] H. Caliskan, "Novel approaches to exergy and economy based enhanced environmental analyses for energy systems," Energy conversion and management, vol. 89, pp. 156-161, 2015.
[34] I. Bhat and R. Prakash, "LCA of renewable energy for electricity generation systems—a review," Renewable and Sustainable Energy Reviews, vol. 13, no. 5, pp. 1067-1073, 2009.
[35] B. K. Sovacool, "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, vol. 36, no. 8, pp. 2950-2963, 2008.
[36] H. Caliskan, "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, vol. 69, pp. 488-492, 2017.
[37] E. Deniz and S. Çınar, "Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification," Energy Conversion and Management, vol. 126, pp. 12-19, 2016.
[38] M. G. den Elzen et al., "The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions," environmental science & policy, vol. 14, no. 1, pp. 28-39, 2011.
[39] S. Saadon, L. Gaillard, C. Menezo, and S. Giroux-Julien, "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, 2019.