مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و ساخت سیستم تعلیق ثانویه مگنتورئولوژیک برای کاهش ارتعاشات و شوک های وارده بر محموله های حساس خودرو های باری

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران
2 گروه مهندسی ساخت و تولید، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران
چکیده
هدف این مقاله، توسعه یک سیستم تعلیق ثانویه نیمه فعال مجهز به دمپرهای مگنتورئولوژیکال، جهت کاهش دامنه ارتعاشات و شوک­های وارده به محموله­های حساس در قسمت بار خودروهای باری جاده­ای می­باشد. دراین راستا، ابتدا یک دمپر مگنتورئولوژیکال‌ دوسر میله، جهت استفاده در سیستم تعلیق ثانویه کامیونت مدل­سازی، طراحی و ساخته شد. در ادامه، با ساخت سه دمپر مشابه با دمپر تست شده، نسبت به ساخت پالت دارای سیستم تعلیق ثانویه متشکل از چهار دمپر مگنتورئولوژیکال جهت نصب بر قسمت بار یک وانت اقدام شد. سپس رفتار سیستم مذکور از طریق آزمایش آن با حرکت خودرو روی پروفیل سرعت­گیر مورد بررسی قرار گرفت. پس از انجام تست­های دینامیکی مربوط به تحریک هارمونیک بر روی دمپر، نتایج بدست آمده از عملکرد آن نشان داد که بیشینه نیروی میرایی دمپر در شدت جریان الکتریکی 2 آمپر، نسبت به حالت (0) آمپر، بطور میانگین 62/11 برابر، افزایش داشته است. همچنین با استفاده از نتایج نیروی حاصل از مدل اسپنسر در پیش­بینی رفتار دینامیکی دمپر با خطای نسبی میانگین 49%/1 نسبت به نیروی حاصل از تست تجربی و تلفیق آن با مدل دوبعدی نصف خودروی باری، عملکرد مجموعه در عبور از پروفیل سرعت­گیر شبیه­سازی شده و پاسخ­های دینامیکی مورد بررسی قرار گرفتند. نتایج نشان دادند که با افزایش شدت جریان الکتریکی دمپرها از 0 تا 2 آمپر، بیشینه شتاب عمودی وارده به مرکز جرم محموله حساس هنگام عبور از دست­انداز، در شبیه­سازی نسبت به حالت بدون سیستم تعلیق ثانویه، 43.6% و در تست­های تجربی، 32.4% کاهش یافته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and construction of a secondary magnetorheological suspension system to mitigate the shocks and vibrations transmitted to sensitive payloads in commercial vehicles

نویسندگان English

seyyed samad samadani agdam 1
Kamal Jahani 1
M.R. Shabgard 2
1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
2 Department of Manufacturing Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
چکیده English

The aim of this research is to develop a semi-active secondary suspension system equipped with magnetorheological dampers to reduce the amplitude of vibrations and shocks to sensitive payloads in the cargo section of road truck. First, a double-ended magnetorheological damper was modeled, designed and built for use in a secondary suspension system of light trucks. Next, a pallet with a secondary suspension system consisting of four magnetoreheological dampers was constructed to be installed on the load side of the light truck. Then, the behavior of the system was examined by testing it by passing the vehicle on the speed-bump profile. By performing dynamic tests with harmonic excitation on the damper, the results showed that the maximum damping force with the electric current of 2 Amp is increased 11.6 times compared to 0 Amp. Furthermore by using the forces obtained from the Spencer model in predicting the dynamic behavior of the damper with an average relative error of %1.49 compared to the force obtained from the experimental test and implementing the two-dimensional model of the half-truck, the performance of the system in passing the speed-bump profile was investigated.The results of simulations and experimental tests showed that with increasing electric current intensity from 0 to 2 Amp, the maximum amplitudes of the sensitive payload decreased in passing the speed-bump %43.6 and %32.4 in simulations and experimental tests comparing to the situation without the secondary suspension system respectively.

کلیدواژه‌ها English

magnetorheological damper
MR fluid
sensitive payloads
Mitigation of shocks and vibrations
secondary suspension system
[1] Odenbach S, Borin D. Electrorheological fluids and magnetorheological suspensions, Journal of Physics: Condensed Matter, vol. 22, p. 320301, 2010.
[2] Ekberg C, Hansson E. Design and simulation of active and semi-active cab suspensions with focus to improve ride comfort of a heavy truck, Master's thesis in Applied Mechanics, 2015.
[3] Van Deusen BD. Truck suspension system optimization, SAE Technical Paper 0148-7191, 1971.
[4] Fischer D, Börner M, Isermann R. Control of mechatronic semi-active vehicle suspensions, IFAC Proceedings Volumes, vol. 35, pp. 209-214, 2002.
[5] Dezheng H, Xinhua L, Zengqiang L, Pawel F, Anna H, Zhixiong L. A Review on Structural Configurations of Magnetorheological Fluid Based Devices Reported in 2018–2020, Frontiers in Materials, Vol. 8, Article 640102 March 2021.
[6] Seid S, Chandramohanb S, Sujathab S. Design and Evaluation of a Magnetorheological Damper Based Prosthetic Knee, IJE TRANSACTIONS A: Basics Vol. 32, No. 1, (January 2019) 146-152.
[7] Marcu FM. Semiactive Cab Suspension control for semi-truck applications, Virginia Tech, 2009.
[8] Chae HD, Choi SB. A new vibration isolation bed stage with magnetorheological dampers for ambulance vehicles, Smart Materials and Structures, vol. 24, p. 017001, 2014.
[9] Ahmadian M, Poynor JC. An evaluation of magneto rheological dampers for controlling gun recoil dynamics, Shock and Vibration, vol. 8, no. 3, 4, pp. 147-155, 2001.
[10] Sun SS, Ning DH, Yang J, Du H, Zhang SW, Li WH, A seat suspension with a rotary magnetorheological damper for heavy duty vehicles, Smart Materials and Structures, vol. 25 no 10, pp. 105032, 2016.
[11] Mao M, Hu W, Choi YT, Wereley NM. A magnetorheological damper with bifold valves for shock and vibration mitigation, Journal of Intelligent Material Systems and Structures, vol. 18, no. 12, pp. 1227-1232, 2007.
[12] Wang Q, Ahmadian M, Chen Z. A novel double-piston magnetorheological damper for space truss structures vibration suppression, Shock and Vibration, vol. 2014, 2014.
[13] Xu ZD, Jia DH, Zhang XC. Performance tests and mathematical model considering magnetic saturation for magnetorheological damper. Journal of Intelligent Material Systems and Structures, 2012, 23:1331-1349.
[14] Lau YK, Liao WH. Design and analysis of magnetorheological dampers for train suspension, Journal of Rail and Rapid Transit, vol. 219, pp. 261-276, 2005.
[15] Rodríguez A, Pozo F, Bahar A, Acho L, Vidal Y, Rodellar J. Force‐derivative feedback semi‐active control of base‐isolated buildings using large‐scale MR fluid dampers, Structural Control and Health Monitoring, vol. 19, pp. 120-145, 2012.
[16] Sun Q, Zhang L, Zhou J, Shi Q. Experimental study of the semi‐active control of building structures using the shaking table, Earthquake engineering & structural dynamics, vol. 32, pp. 2353-2376, 2003.
[17] Mao M, Hu W, Choi YT, Wereley NM. A magnetorheological damper with bifold valves for shock and vibration mitigation, Journal of Intelligent Material Systems and Structures, vol. 18, pp. 1227-1232, 2007.
[18] Kwok N, Ha Q, Nguyen M, Li J, Samali B. Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA, ISA transactions, vol. 46, pp. 167-179, 2007.
[19] Kamble VG, Kolekar S, Madivalar C. Preparation of magnetorheological fluids using different carriers and detailed study on their properties, American Journal of Nanotechnology, vol. 6, p. 7, 2015.
[20] Mousazadeh M, jahani K, Samadani Aghdam SS, Experimental Study of the Effects of Iron Particles Size on Damping Force and Energy Dissipation of a Double-Ended Magnetorheological Damper. Modares Mechanical Engineering, 2019, 19(9): 2129-2138.
[21] Singh HJ, Wereley NM. Optimal control of gun recoil in direct fire using magnetorheological absorbers. Smart materials and Structures, 2014, 23:055009.
[22] Mao M, Hu W, Choi YT, Wereley NM, Browne AL, Ulicny J. Experimental validation of a magnetorheological energy absorber design analysis. Journal of Intelligent Material Systems and Structures, 2014, 25(3):352-363.
[23] Miao Yu, Liao CR, Chen WM, Huang SL. Study On MR Semi-Active Suspension System And Its Road Testing. Journal Of Intelligent Material Systems And Structures, 2006, Vol. 17.
[24] White FM. Fluid mechanics. 2nd Edition, New York: Mc Graw Hill Book Company, Blacklick, 1986, 732 pages.
[25] Agostinacchio M, Ciampa D, Olita S. The vibrations induced by surface irregularities in road pavements–a Matlab® approach, European Transport Research Review, vol. 6, pp. 267-275, 2014.
[26] Adibi H, Yarali E, Ramezan Shams A. Design, fabricate and testing the novel Magnetorheologic damper involving stabilizer nanoparticles of silicone, Modares Mechanical Engineering, vol. 17, pp. 252-258, 2017.
[27] Wang D, Liao WH. Magnetorheological fluid dampers: a review of parametric modelling, Smart materials and structures, vol. 20, no. 2, pp. 023001, 2011.
[28] Mousazadeh M, jahani K, Abdullahe M, Identification of Parameters of Spencer Model in a Double-Ended Magnetorheological Damper for Different Sizes of Carbonyl Iron Powder for Magnetorheological Fluid Modares Mechanical Engineering, 2019,19(5):1307-1317.
[29] Spencer Jr BF, Dyke SJ, Sain MK, Carlson JD, Phenomenological model for magnetorheological dampers, Journal of engineering Mechanics, vol.123, 230-238, 1997.