[1] J. Chen, S.-B. Huang, C. Xue, B. Fan, D. Chen, J. Wang, M.-H. Wu, Single-cell mechanical properties: label-free biomarkers for cell status evaluation, in: Essentials of Single-Cell Analysis, Springer, 2016, pp. 213-234.
[2] X. Deng, F. Xiong, X. Li, B. Xiang, Z. Li, X. Wu, C. Guo, X. Li, Y. Li, G. Li, Application of atomic force microscopy in cancer research, Journal of nanobiotechnology, 16(1) (2018) 1-15.
[3] T. Fischer, N. Wilharm, A. Hayn, C.T. Mierke, Matrix and cellular mechanical properties are the driving factors for facilitating human cancer cell motility into 3D engineered matrices, Convergent Science Physical Oncology, 3(4) (2017) 044003.
[4] J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophysical journal, 88(5) (2005) 3689-3698.
[5] I. Guido, M.S. Jaeger, C. Duschl, Dielectrophoretic stretching of cells allows for characterization of their mechanical properties, European Biophysics Journal, 40(3) (2011) 281-288.
[6] T. Yoshino, T. Tanaka, S. Nakamura, R. Negishi, N. Shionoiri, M. Hosokawa, T. Matsunaga, Evaluation of cancer cell deformability by microcavity array, Analytical biochemistry, 520 (2017) 16-21.
[7] M.H. Korayem, M. Vaez, Z. Rastegar, Modeling and simulation of three-dimensional manipulation of viscoelastic folded biological particles considering the nonlinear model of the cell by AFM, Mechanics of Materials, 143 (2020) 103342.
[8] S.H. Lee, O.-K. Kim, S. Lee, J.K. Kim, Local-dependency of morphological and optical properties between breast cancer cell lines, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 205 (2018) 132-138.
[9] S. Moasses Ghafary, M. Nikkhah, S. Hatamie, S. Hosseinkhani, Design and Preparation of Photoluminescent Nanoparticles based on Chimeric Peptides-Graphene Quantum Dots for Nuclear Drug Delivery and Tracking, Modares Journal of Biotechnology, 10(1) (2019) 45-51.
[10] M.H. Korayem, H. Khaksar, R.N. Abad, M. Taheri, Simulation of soft bacteria contact to be applied in nanomanipulation, Modares Mechanical Engineering, 14(14) (2015).
[11] M. Kazemi, J. Amani, A.H. Salmanian, M.M. Forghanifard, H. Aghamollaei, Design and expression of recombinant HER-2 antigen as a marker for detection of breast cancer, Pathobiology Research, 17(4) (2015) 88-99.
[12] M. Soltani, R. Rahpeima, F. Moradi Kashkooli, A. Alipoor, P. Torkaman, Numerical modeling of breast cancer diagnosis with microwave thermo-acoustic imaging, Modares Mechanical Engineering, 18(9) (2018) 142-150.
[13] J. Rother, H. Nöding, I. Mey, A. Janshoff, Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines, Open biology, 4(5) (2014) 140046.
[14] W. Chang, I. Etsion, D.B. Bogy, An elastic-plastic model for the contact of rough surfaces, (1987).
[15] Y. Chen, W. Norde, H.C. van der Mei, H.J. Busscher, Bacterial cell surface deformation under external loading, MBio, 3(6) (2012).
[16] M. Brake, An analytical elastic-perfectly plastic contact model, International Journal of Solids and Structures, 49(22) (2012) 3129-3141.
[17] M. Korayem, M. Zakeri, Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM, The International Journal of Advanced Manufacturing Technology, 41(7) (2009) 714-726.
[18] Y. Wang, C. Xu, N. Jiang, L. Zheng, J. Zeng, C. Qiu, H. Yang, S. Xie, Quantitative analysis of the cell‐surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy, Scanning, 38(6) (2016) 558-563.
[19] M.H. Korayem, Z. Rastegar, Experimental Characterization of MCF-10A Normal Cells Using AFM: Comparison with MCF-7 Cancer Cells, Molecular & Cellular Biomechanics, 16(2) (2019) 109.