مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی آزمایشگاهی اثر میکرو الیاف های طبیعی بر چقرمگی شکست مود I چندلایه های کامپوزیتی با الیاف بافته شده

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
2 استادیار، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران
3 دانشیار، گروه مهندسی هوافضا، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
4 استاد، گروه مهندسی ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
چکیده
در مطالعه حاضر به بررسی اثر میکرو الیاف­ های طبیعی (ذرات کرک) بر چقرمگی شکست مود I چندلایه­ های کامپوزیتی با الیاف بافته شده پرداخته شده است. به همین منظور نمونه­ های تیر دو لبه یکسر گیردار (DCB) با استفاده از روش لایه چینی دستی و با چیدمان 28]0[ ساخته شده­ اند. برای بررسی اثر ذرات میکرو کرک بر چقرمگی شکست، نمونه­ هایی با دو درصد وزنی مختلف (1% وزنی و 3% وزنی) ساخته شده و نتایج بدست آمده با نمونۀ با رزین اپوکسی خالص مقایسه گردیده است. نتایج آزمایشگاهی نشان می ­دهد که با افزایش مقدار ذرات کرک، مقدار چقرمگی بین­ لایه­ای شروع تورق افزایش داشته است. مقدار بهبود چقرمگی شکست شروع برای نمونۀ DCB با %1 و %3 وزنی کرک به ترتیب %67.15 و %71.96 موجب افزایش شده است که علت این امر به نقش کرک در ناحیه غنی از رزین در نوک ترک بر می­ گردد که مانع شروع تورق در این ناحیه شده است. بر خلاف چقرمگی شکست شروع، چقرمگی شکست رشد با اضافه کردن ذرات کرک به رزین کاهش یافته است. در حین رشد تورق از آنجائیکه این الیاف به دلیل تجمع و کلوخگی در فصل مشترک تورق موجب ایجاد نواحی تمرکز تنش می­ گردند، در نتیجه میکرو الیاف­ های کرک نتوانسته ­اند مقدار چقرمگی شکست رشد را افزایش داده و در بعضی موارد موجب کاهش اندک چقرمگی شکست رشد تورق شده است. همچنین به منظور بررسی مکانیزم­ های آسیب، از سطوح شکست نمونه ­ها با استفاده از میکروسکوپ الکترونی روبشی عکسبرداری شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation of the effect of natural microfibers on the mode I fracture toughness of plain-woven laminated composites

نویسندگان English

Ali Zeinolabedin Beygi 1
Mazaher Salamat-talab 2
Amin Farrokhabadi 3
Hassan Moslemi Naeini 4
1 Master of Science Student, Department of Mechanical Engineering, Tarbiat Modares University
2 Assistant professor, Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
3 Associate Professor, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
4 Professor, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

In the present study, the effect of natural microfibers (cork particles) on the mode I fracture toughness of plain-woven laminated composites has been investigated. For this purpose, double cantilever beam (DCB) specimens manufactured using hand lay-up method with stacking sequence of [0]28. To investigate the effect of cork particles on fracture toughness, samples with two different weight percentages (1% by weight and 3% by weight) were manufactured and the experimental results were compared with one obtained from sample with pure epoxy resin. Experimental results show that as the amount of cork particles increases, the onset of crack growth requires more energy. The amount of improvement in initiation fracture toughness for the DCB sample with 1% and 3% cork weigh has been increased by 67.15% and 71.96%, respectively which is due to the role of the cork in the resin rich area near the crack tip that arrested the delamination growth. Unlike the initiation fracture toughness, the propagation value is reduced by adding cork particles to the resin. During delamination growth, due to the agglomeration of micro fiber at delamination interface and role of stress concentration of these particles, hence, micro-cork fibers have not been able to increase the propagation fracture toughness and in some cases have slightly reduced the propagation fracture toughness of the delamination. Also, in order to investigate the mechanisms of damage, the fracture surfaces of the samples were scanned using scanning electron microscopy.

کلیدواژه‌ها English

Micro cork particles
Mode l fracture
Double cantilever beam
Delamination
Laminated composite
1- Romhany G, Szebenyi G. Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polymer Letters. 2009;3(3):145-51.
2- Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, Van Vuure AW, gorbatikh L, Moldenaers P, Verpoest I. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon. 2009;47(12):2914-23.
3- Wichmann MH, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics. 2006;73(16):2346-59.
4- Seyhan AT, Tanoglu M, Schulte K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics. 2008;75(18):5151-62.
5- Warrier A, Godara A, Rochez O, Mezzo L, Luizi F, Gorbatikh L, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing. 2010;41(4):532-8.
6- Kerman saravi M, Pol MH, Sattari MH. Experimental investigation of the influence of adding carbon nanotubes on the mode l interlaminar fracture toughness of laminated composites. Modares Mechanical Engineering. 2016;16(3) (in Persian).
7- Ashrafi B, Guan J, Mirjalili V, Zhang Y, Chun L, Hubert P, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Composites science and technology. 2011;71(13):1569-78.
8- Garcia EJ, Wardle BL, Hart AJ, Yamamoto N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Composites Science and Technology. 2008;68(9):2034-41.
9- Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Paipetis A. Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials. 2009;43(9):977-85.
10- Sadeghian R, Gangireddy S, Minaie B, Hsiao K-T. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: applied science and manufacturing. 2006;37(10):1787-95.
11- Yokozeki T, Iwahori Y, Ishiwata S, Enomoto K. Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Composites Part A: Applied Science and Manufacturing. 2007;38(10):2121-30.
12- Yokozeki T, Iwahori Y, Ishibashi M, Yanagisawa T, Imai K, Arai M, et al. Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Composites Science and Technology. 2009;69(14):2268-73.
13- Siddiqui NA, Woo RS, Kim J-K, Leung CC, Munir A. Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied science and manufacturing. 2007;38(2):449-60.
14- Wang P, Liu W, Zhang X, Lu X, Yang J. Enhanced fracture toughness of carbon fabric/epoxy laminates with pristine and functionalized stacked-cup carbon nanofibers. Engineering Fracture Mechanics. 2015;148:73-81.
15- Movahhedi Aleni H, Lighat GH, Pol Mh, Afrouzian A. An experimental investigation on mode-II interlaminar fracture toughness of nanosilica modified glass/epoxy fiber-reinforced laminates. Modares Mechanical Engineering. 2015;15(3):283-90 (in Persian).
16- Zeng Y, Liu H-Y, Mai Y-W, Du X-S. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering. 2012;43(1):90-4.
17- Tsai J-L, Huang B-H, Cheng Y-L. Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. Journal of composite materials. 2009;43(25):3107-23.
18- Ozdemir N, Zhang T, Aspin I, Scarpa F, Hadavinia H, Song Y. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications. Express Polymer Letters. 2016;10(5):394-407.
19- Palmeri M, Putz K, Ramanathan T, Brinson L. Multi-scale reinforcement of CFRPs using carbon nanofibers. Composites science and technology. 2011;71(2):79-86.
20- Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Tanimoto T, Friedrich K. On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Composites Part A: Applied Science and Manufacturing. 2007;38(4):1159-62.
21- Kostopoulos V, Karapappas P, Loutas T, Vavouliotis A, Paipetis A, Tsotra P. Interlaminar Fracture Toughness of Carbon Fibre‐Reinforced Polymer Laminates With Nano‐and Micro‐Fillers. Strain. 2011;47:e269-e82.
22- Kostagiannakopoulou C, Loutas T, Sotiriadis G, Markou A, Kostopoulos V. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species. Composites Science and Technology. 2015;118:217-25.
23- Her S-C, Zhang K-C. Mode I Fracture Toughness of Graphene Reinforced Nanocomposite Film on Al Substrate. Nanomaterials. 2021;11(7):1743.
24- Chen H, Wang J, Ni A, Ding A, Li S, Han X. Effect of nano-OMMTs on mode I and mode II fracture toughness of continuous glass fibre reinforced polypropylene composites. Composite Structures. 2019;208:498-506.
25- Prasad V, Sekar K, Varghese S, Joseph M. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Composites Part A: Applied Science and Manufacturing. 2019;124:105505.
26- Truong GT, Choi K-K. Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites. Construction and Building Materials. 2020;259:119696.
27- Fortes A, Rosa M, Pereira H. The Cork (a Cortiça). IST Press, Lisboa; 2004.
28- Silva S, Sabino M, Fernandes E, Correlo V, Boesel L, Reis R. Cork: properties, capabilities and applications. International Materials Reviews. 2005;50(6):345-65.
29- Pereira H. Chemical composition and variability of cork from Quercus suber L. Wood science and technology. 1988;22(3):211-8.
30- Gil L. Cork composites: a review. Materials. 2009;2(3):776-89.
31- Gil L. New cork-based materials and applications. Materials. 2015;8(2):625-37.
32- Úbeda X, Pereira P, Outeiro L, Martin D. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land degradation & development. 2009;20(6):589-608.
33- da Silva C, Barbosa A, Carbas R, Marques E, Akhavan-Safar A, da Silva L. Influence of cork microparticles on the fracture type in single lap joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020:0954406220936729.
34- Barbosa A, Da Silva L, Öchsner A, Abenojar J, Del Real J. Influence of the size and amount of cork particles on the impact toughness of a structural adhesive. The Journal of Adhesion. 2012;88(4-6):452-70.
35- Barbosa AQ, Da Silva L, Abenojar J, Figueiredo M, Öchsner A. Toughness of a brittle epoxy resin reinforced with micro cork particles: Effect of size, amount and surface treatment. Composites Part B: Engineering. 2017;114:299-310.
36- Akhavan-Safar A, Barbosa AQ, Ayatollahi MR, da Silva LFM. Influence of microcork particles on the lap shear strength of an epoxy adhesive subjected to fatigue loading and different environmental conditions. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(6):851-8.
37- Akhavan-Safar A, Barbosa AQ, da Silva LFM, Ayatollahi MR. Micro failure analysis of adhesively bonded joints enhanced with natural cork particles: Impact of overlap length and particles volume fraction. Frattura ed Integrità Strutturale. 2018;12(46):266-74.
38- Abdallah FB, Cheikh RB, Baklouti M, Denchev Z, Cunha AM. Effect of surface treatment in cork reinforced composites. Journal of Polymer Research. 2010;17(4):519-28.
39- Abenojar J, Barbosa A, Ballesteros Y, Del Real J, Da Silva L, Martínez M. Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood science and technology. 2014;48(1):207-24.
40- Brunner A, Blackman B, Williams J. Calculating a damage parameter and bridging stress from GIC delamination tests on fibre composites. Composites Science and Technology. 2006;66(6):785-95.
41- Shokrieh M, Salamat-Talab M, Heidari-Rarani M. Effect of interface fiber angle on the R-curve behavior of E-glass/epoxy DCB specimens. Theoretical and Applied Fracture Mechanics. 2016;86:153-60.
42- Zheng N, Huang Y, Liu H-Y, Gao J, Mai Y-W. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Composites Science and Technology. 2017;140:8-15.