مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و ساخت هورن التراسونیک به منظور تقویت دامنه ارتعاش در همگن سازی امولسیون

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه کاشان
چکیده
امروزه کاربرد ابزارهای التراسونیک در فرآیند‌های مختلف از جمله ماشینکاری، جوشکاری، همگن‌ساز و غیره، گسترده گردیده است. یکی از اجزای مهم و کلیدی در انتقال انرژی اکوستیکی در کاربردهای همگن­سازی امولسیون، هورن التراسونیک می­باشد. این قطعه از دیدگاه انرژی پایستار می­باشد ولی می­توان با تغییرات شکل و جنس، میزان دامنه ارتعاشی را تغییر داد. هدف از این مقاله، تحلیل هورن التراسونیک چند پله­ای برای دستیابی به دامنه ارتعاش مورد نظر در کاربردهای گوناگون می­باشد. طراحی بهینه هورن با هدف افزایش دامنه ارتعاش، افزایش و توزیع سطح انتقال امواج و در نظر گرفتن استحکام هورن، نسبت طول به قطر مناسب برای دستیابی به یکنواختی کاویتاسیون در امولسیون انجام شده است. هدف دستیابی به هورن با ضریب تقویت­کنندگی بالا و مساحت انتشار بزرگتر و گسترده­تر در انتها و طول هورن می­باشد. بالا بودن دامنه ارتعاش وگستردگی مساحت انتشار امواج در نوک و طول هورن موجب افزایش میزان کاویتاسیون در فرآیند امولسیون می­گردد و هرچقدر بتوان نواحی انتشار موج را گسترده تر نمود، راندمان فرآیند همگن­سازی افزایش خواهد یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and fabrication of ultrasonic horns to enhance the amplitude of vibration in emulsion homogenization

نویسندگان English

Davoud Mirzaei
Saeed Amini
Kashan
چکیده English

Today, the application of ultrasonic tools in various processes such as machining, welding, homogenizing, etc., has become widespread. One of the most important and key components in the transfer of acoustic energy in emulsion homogenization applications is the ultrasonic horn. This part is stable from the point of view of energy, but the amount of vibration amplitude can be changed by changing the shape and material. The purpose of this paper is to analyze the multistage ultrasonic horn to achieve the desired vibration amplitude in various applications. Optimal horn design has been done with the aim of increasing the amplitude of vibration, increasing and distributing the wave transmission surface and considering the strength of the horn, the appropriate length to diameter ratio to achieve uniform cavitation in the emulsion. The goal is to achieve a horn with a high amplification factor and a larger and wider radiation area at the end and lateral area of the horn. The high vibration amplitude and wave propagation area at the tip and the lateral area of the horn increase the amount of cavitation in the emulsion process, and the wider the wave propagation regions, the more efficient the homogenization process will be.

کلیدواژه‌ها English

Ultrasonic Horn
Amplification factor
Emulsion
numerical and analytical method
Optimization
1- Scholz P, Keck CM. Nanoemulsions produced by rotor–stator high speed stirring. International journal of pharmaceutics. 2015 Mar 30;482(1-2):110-7.
2- Ruiz-Montañez G, Ragazzo-Sanchez JA, Picart-Palmade L, Calderón-Santoyo M, Chevalier-Lucia D. Optimization of nanoemulsions processed by high-pressure homogenization to protect a bioactive extract of jackfruit (Artocarpus heterophyllus Lam). Innovative Food Science & Emerging Technologies. 2017 Apr 1;40:35-41.
3- Llinares R, Santos J, Trujillo-Cayado LA, Ramírez P, Muñoz J. Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. LWT. 2018 Nov 1;97:370-5.
4- Leong TS, Wooster TJ, Kentish SE, Ashokkumar M. Minimising oil droplet size using ultrasonic emulsification. Ultrasonics sonochemistry. 2009 Aug 1;16(6):721-7.
5-Karim ZA, Kaur E, Masharuddin SM, Khan MY, Hagos FY. The characteristics of water-in-biodiesel emulsions produced using ultrasonic homogenizer. Alexandria Engineering Journal. 2020 Feb 1;59(1):227-37.
6-Tiong TJ, Chu JK, Lim LY, Tan KW, Yap YH, Asli UA. A computational and experimental study on acoustic pressure for ultrasonically formed oil-in-water emulsion. Ultrasonics sonochemistry. 2019 Sep 1;56:46-54
7- Wei Z, Kosterman JA, Xiao R, Pee GY, Cai M, Weavers LK. Designing and characterizing a multi-stepped ultrasonic horn for enhanced sonochemical performance. Ultrasonics sonochemistry. 2015 Nov 1;27:325-33.
8- Merkulov, L. G. 1957. Design of ultrasonic concentrations. Sov. Phys. Acoust. 3: 230–238.
9- Ensminger D. Solid Cone in Longitudinal Half‐Wave Resonance. The Journal of the Acoustical Society of America. 1960 Feb;32(2):194-6
10- Amza G, Drimer D. The design and construction of solid concentrators for ultrasonic energy. Ultrasonics. 1976 Sep 1;14(5):223-6.
11- Amin SG, Ahmed MH, Youssef HA. Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology. 1995 Dec 1;55(3-4):254-60.
12- Sherrit S, Badescu M, Bao X, Bar-Cohen Y, Chang Z. Novel horn designs for power ultrasonics. InIEEE Ultrasonics Symposium, 2004 2004 Aug 23 (Vol. 3, pp. 2263-2266). IEEE.
13- Woo, J., Roh, Y., Kang, K. and Lee, S. 2006. Design and construction of an acoustic horn for high power ultrasonic transducers. Proc. Ultrason. Symp. 1: 1922–1925. doi 10.1109/ULTSYM.2006.483
14- Peshkovsky SL, Peshkovsky AS. Matching a transducer to water at cavitation: Acoustic horn design principles. Ultrasonics sonochemistry. 2007 Mar 1;14(3):314-22.
15- Wang DA, Chuang WY, Hsu K, Pham HT. Design of a Bézier-profile horn for high displacement amplification. Ultrasonics. 2011 Feb 1;51(2):148-56.
16- Behera BC, Sahoo SK, Patra LN, Rout MP, Kanaujia KK. Finite element analysis of ultrasonic stepped horn. National Institute of Technology, Rourkela–769. 2011 Jun 6;8.
17- Nguyen HT, Nguyen HD, Uan JY, Wang DA. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding. Ultrasonics. 2014 Dec 1;54(8):2063-71.
18- Peshkovsky AS, Bystryak S. Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chemical Engineering and Processing: Process Intensification. 2014 Aug 1;82:132-6.
19-EMAMI M. Analytical modeling and finite element simulation of exponential horns with rectangular cross-section: Application on ultrasonic assisted grinding. Modares Mechanical Engineering. 2014 Feb 20;13(14):158-95.
18-Wei Z, Kosterman JA, Xiao R, Pee GY, Cai M, Weavers LK. Designing and characterizing a multi-stepped ultrasonic horn for enhanced sonochemical performance. Ultrasonics sonochemistry. 2015 Nov 1;27:325-33.
21- S. S. Rashwan, I. Dincer, and A. Mohany, “Investigation of acoustic and geometric effects on the sonoreactor performance,” Ultrason. Sonochem., vol. 68, p. 105174, 2020.
22- M. Karafi and S. Kamali, “A continuum electro-mechanical model of ultrasonic Langevin transducers to study its frequency response,” Appl. Math. Model., vol. 92, pp. 44–62, 2021.
23- Yusuf L, Symes MD, Prentice P. Characterising the cavitation activity generated by an ultrasonic horn at varying tip-vibration amplitudes. Ultrasonics Sonochemistry. 2021 Jan 1;70:105273.
24- A. Wang et al., “A hollow exponential ultrasonic horn for aluminum melt degassing under power ultrasound and rotating flow field,” Results Phys., vol. 21, p. 103822, 2021.
25- Sajjady, S. and S. Amini, Invention of a new ultrasonic horn in 3D ultrasonic vibration assisted turning. Modares Mechanical Engineering, 2019. 19(8): p. 1845-1854.
26- Sajjady, S.A., et al., Improving the surface energy of titanium implants by the creation of hierarchical textures on the surface via three-dimensional elliptical vibration turning for enhanced osseointegration. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019. 233(12): p. 1226-1236.
27- Kumar P, Prakasan K. Acoustic horn design for joining metallic wire with flat metallic sheet by ultrasonic vibrations. Journal of Vibro engineering. 2018 Nov 1;20(7).
28- Wang B, Li D, Wang LJ, Özkan N. Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. Journal of Food Engineering. 2010 Feb 1;96(4):555-61.
29-Einhorn‐Stoll U, Weiss M, Kunzek H. Influence of the emulsion components and preparation method on the laboratory‐scale preparation of o/w emulsions containing different types of dispersed phases and/or emulsifiers. Food/Nahrung. 2002 Jul 1;46(4):294-301.