مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی فنی اقتصادی به کار گیری مخزن ذخیره انرژی حرارتی در سیستم تولید همزمان حرارت، توان و آب شیرین

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه ولیعصر رفسنجان
چکیده
طراحی و بهینه سازی سیستم های تولید چندگانه، از جمله سیستم هایی که حرارت، توان و آب آشامیدنی را به طور همزمان تولید می کنند نقش بسزایی در بهبود عملکرد این سیستم ها نسبت به حالت جداگانه ایفا می کنند. در این پژوهش پس از مدلسازی سیستم آب شیرین کن تبخیری چند اثره MED و سیستم تولید همزمان حرارت و توانCHP ، با یکدیگر ادغام شده اند تا تقاضای گرمایش، توان و آب شیرین را با هم برای یک هتل، تامین نمایند. هدف در این مطالعه ارزیابی فنی اقتصادی استفاده از مخزن ذخیره انرژی حرارتی در سیستم ترکیبی CHP+MED نسبت به حالت عدم استفاده از این مخزن می باشد. استراتژی به کار گرفته شده به صورت هر 24 ساعت از دو فصل سال است. در بهینه سازی این سیستم کمینه سازی هزینه سالیانه به عنوان تابع هدف و با استفاده از الگوریتم ژنتیک صورت گرفته است. نتایج بهینه فنی در این سیستم ها نشان می دهد در سیستم CHP+MED+TES توربین گازی با ظرفیت نامی 12 % بزرگتر و بویلر پشتیبان با ظرفیت نامی 14/7 % کوچکتر نسبت به سیستم CHP+MED نیاز است. نتایج بهینه حاصل از مقایسه اقتصادی نشان می دهد که با به کار گیری مخزن ذخیره انرژی حرارتی در سیستم ترکیبی CHP+MED هزینه سالیانه 91/4% بهبود می یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Thermoeconomic evaluation of using thermal energy storage tank in the cogeneration production system of heating, power (CHP), and freshwater

نویسندگان English

vahid ghamari
Hassan Hajabdollahi
M.Sc, Department of Mechanical Engineering, Faculty of Engineering, Rafsanjan Valiasr University, Rafsanjan, Iran
چکیده English

The design and optimization of multiple production systems, including systems that simultaneously generate heat, power and freshwater, play an important role in improving the performance of these systems. In this study, after modeling a multi-effect evaporative desalination system MED and simultaneous heat and power generation CHP, they are combined to meet the demand for heating, power and fresh water for a hotel. The purpose of this study is the thermoeconomic evaluation of the use of thermal energy storage TES tank in the combined system CHP + MED compared to the non-use of this tank. The strategy is applied every 24 hours of the two seasons. In optimizing this system, the annual cost minimization has been done as a objective function and using genetic algorithm. Optimal technical results in these systems show that the system CHP + MED + TES requires a gas turbine with a nominal capacity of 12% larger and a backup boiler with a nominal capacity of 7.14% smaller than the system CHP + MED. The optimal results of the economic comparison show that by using the thermal energy storage tank in the combined system CHP + MED, the annual cost is improved by 4.91%.

کلیدواژه‌ها English

Thermal energy storage tank
power and fresh water production system
thermoeconomic evaluation
Desalination
energy system
Optimization
Baniassadi A, Momen M, Shirinbakhsh M, Amidpour M, Application of R-curve analysis in evaluating the effect of integrating renewable energies in cogeneration systems. Applied Thermal Engineering. 2016; 93: 297-307. [DOI:10.1016/j.applthermaleng.2015.09.101]
[1] Baniassadi A, Momen M, Shirinbakhsh M, Amidpour M, Application of R-curve analysis in evaluating the effect of integrating renewable energies in cogeneration systems. Applied Thermal Engineering. 2016; 93: 297-307. [DOI:10.1016/j.applthermaleng.2015.09.101]
Dincer I, Rosen M A, Chapter 13 - Exergy analyses of cogeneration and district energy systems. Editor(s): Ibrahim Dincer, Marc A. Rosen, Exergy (Third Edition). Elsevier. 2021; 355-381. [DOI:10.1016/B978-0-12-824372-5.00013-0]
[2] Dincer I, Rosen M A, Chapter 13 - Exergy analyses of cogeneration and district energy systems. Editor(s): Ibrahim Dincer, Marc A. Rosen, Exergy (Third Edition). Elsevier. 2021; 355-381. [DOI:10.1016/B978-0-12-824372-5.00013-0]
Wang X, van Dam KH, Triantafyllidis C, Koppelaar RHEM, Shah N. Energy-water nexus design and operation towards the sustainable development goals. Computers Chemical Engineering. 2019; 124:162-71. [DOI:10.1016/j.compchemeng.2019.02.007]
[3] Wang X, van Dam KH, Triantafyllidis C, Koppelaar RHEM, Shah N. Energy-water nexus design and operation towards the sustainable development goals. Computers Chemical Engineering. 2019; 124:162-71. [DOI:10.1016/j.compchemeng.2019.02.007]
Pugsley A, Zacharopoulos A, Mondol JD, Smyth M. Global applicability of solar desalination. Renew Energy 2016; 88:200-19. [DOI:10.1016/j.renene.2015.11.017]
[4] Pugsley A, Zacharopoulos A, Mondol JD, Smyth M. Global applicability of solar desalination. Renew Energy 2016; 88:200-19. [DOI:10.1016/j.renene.2015.11.017]
A. Tamburini, A. Cipollina, G. Micale, A. Piacentino. CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design options under the current legislative EU framework, Energy. 2016; 115 (3): 1548-1559. [DOI:10.1016/j.energy.2016.03.066]
[5] A. Tamburini, A. Cipollina, G. Micale, A. Piacentino. CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design options under the current legislative EU framework, Energy. 2016; 115 (3): 1548-1559. [DOI:10.1016/j.energy.2016.03.066]
Mansouri M T, Amidpour M, Ponce-Ortega J M. Optimization of the integrated power and desalination plant with algal cultivation system compromising the energy water-environment nexus, Sustainable Energy Technologies and Assessments. 2020; 42: 100879. [DOI:10.1016/j.seta.2020.100879]
[6] Mansouri M T, Amidpour M, Ponce-Ortega J M. Optimization of the integrated power and desalination plant with algal cultivation system compromising the energy water-environment nexus, Sustainable Energy Technologies and Assessments. 2020; 42: 100879. [DOI:10.1016/j.seta.2020.100879]
E. Cardona, A. Piacentino, F. Marchese. Performance evaluation of CHP hybrid seawater desalination plants, Desalination. 2007; 205: 1-14. [DOI:10.1016/j.desal.2006.02.048]
[7] E. Cardona, A. Piacentino, F. Marchese. Performance evaluation of CHP hybrid seawater desalination plants, Desalination. 2007; 205: 1-14. [DOI:10.1016/j.desal.2006.02.048]
Salimi M, Amidpour M. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Conversion and Management. 2017; 138: 299-311. [DOI:10.1016/j.enconman.2017.01.080]
[8] Salimi M, Amidpour M. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Conversion and Management. 2017; 138: 299-311. [DOI:10.1016/j.enconman.2017.01.080]
Harandi H B, Asadi A, Rahnama M, Shen Z G, Sui P C. Modeling and multi-objective optimization of integrated MED-TVC desalination system and gas power plant for waste heat harvesting. Computers & Chemical Engineering. 2021; 149: 107294. [DOI:10.1016/j.compchemeng.2021.107294]
[9] Harandi H B, Asadi A, Rahnama M, Shen Z G, Sui P C. Modeling and multi-objective optimization of integrated MED-TVC desalination system and gas power plant for waste heat harvesting. Computers & Chemical Engineering. 2021; 149: 107294. [DOI:10.1016/j.compchemeng.2021.107294]
Khoshgoftar Manesh M H, Firouzi P, Kabiri S, Blanco-Marigorta A M. Evaluation of power and freshwater production based on integrated gas turbine, S-CO2, and ORC cycles with RO desalination unit. Energy Conversion and Management. 2021; 228: 113607. [DOI:10.1016/j.enconman.2020.113607]
[10] Khoshgoftar Manesh M H, Firouzi P, Kabiri S, Blanco-Marigorta A M. Evaluation of power and freshwater production based on integrated gas turbine, S-CO2, and ORC cycles with RO desalination unit. Energy Conversion and Management. 2021; 228: 113607. [DOI:10.1016/j.enconman.2020.113607]
Benalcazar P. Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study. Energy. 2021; 234: 121323. [DOI:10.1016/j.energy.2021.121323]
[11] Benalcazar P. Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study. Energy. 2021; 234: 121323. [DOI:10.1016/j.energy.2021.121323]
Lepiksaar K, Mašatin V, Latõšov E, Siirde A, Volkova A. Improving CHP flexibility by integrating thermal energy storage and power-to-heat technologies into the energy system. Smart Energy. 2021; 2: 100022. [DOI:10.1016/j.segy.2021.100022]
[12] Lepiksaar K, Mašatin V, Latõšov E, Siirde A, Volkova A. Improving CHP flexibility by integrating thermal energy storage and power-to-heat technologies into the energy system. Smart Energy. 2021; 2: 100022. [DOI:10.1016/j.segy.2021.100022]
Hajabdollahi H. Evaluation of cooling and thermal energy storage tanks in optimization of multi-generation system. Journal of Energy Storage. 2015; 4: 1-13. [DOI:10.1016/j.est.2015.08.004]
[13] Hajabdollahi H. Evaluation of cooling and thermal energy storage tanks in optimization of multi-generation system. Journal of Energy Storage. 2015; 4: 1-13. [DOI:10.1016/j.est.2015.08.004]
Al-Mutaz I S, Wazeer I, Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination. 2014; 351: 9-18. [DOI:10.1016/j.desal.2014.07.018]
[14] Al-Mutaz I S, Wazeer I, Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination. 2014; 351: 9-18. [DOI:10.1016/j.desal.2014.07.018]
Ettouney H M, El-Dessouky H. Fundamentals of salt water desalination. 2002.52.
[15] Ettouney H M, El-Dessouky H. Fundamentals of salt water desalination. 2002.52.
Miyatake O, Murakami K, Kawata Y, Fujii, Fundamental experiments with flash evaporation. Heat Transf. Jpn. Res. 1973; 2: 89-100.52.
[16] Miyatake O, Murakami K, Kawata Y, Fujii, Fundamental experiments with flash evaporation. Heat Transf. Jpn. Res. 1973; 2: 89-100.52.
Hajabdollahi H, Ganjehkaviri A, Nazri Mohd Jaafar M. Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms. Applied Thermal Engineering. 2015; 75: 468-480. [DOI:10.1016/j.applthermaleng.2014.09.033]
[17] Hajabdollahi H, Ganjehkaviri A, Nazri Mohd Jaafar M. Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms. Applied Thermal Engineering. 2015; 75: 468-480. [DOI:10.1016/j.applthermaleng.2014.09.033]
Hajabdollahi H. Investigating the effects of load demands on selection of optimum CCHP-ORC plant, Applied Thermal Engineering. 2015; 87: 547-558. [DOI:10.1016/j.applthermaleng.2015.05.050]
[18] Hajabdollahi H. Investigating the effects of load demands on selection of optimum CCHP-ORC plant, Applied Thermal Engineering. 2015; 87: 547-558. [DOI:10.1016/j.applthermaleng.2015.05.050]
Sanaye S, Hajabdollahi H. Comparison of different scenarios in optimal design of a CCHP plant. http://pie.sagepub.com/content/early/2014/08/16/0954408914547070.refs.htm.
[19] Sanaye S, Hajabdollahi H. Comparison of different scenarios in optimal design of a CCHP plant. http://pie.sagepub.com/content/early/2014/08/16/0954408914547070.refs.htm.
Esrafilian M, Ahmadi R, Energy, environmental and economic assessment of a poly generation system of local desalination and CCHP. Desalination. 2019; 454: 20-37. [DOI:10.1016/j.desal.2018.12.004]
[20] Esrafilian M, Ahmadi R, Energy, environmental and economic assessment of a poly generation system of local desalination and CCHP. Desalination. 2019; 454: 20-37. [DOI:10.1016/j.desal.2018.12.004]
Ashour M M, Steady state analysis of the TripoliWest LT-HT-MED plant. Desalination. 2003; 152: (1) 191-194. [DOI:10.1016/S0011-9164(02)01062-7]
[21] Ashour M M, Steady state analysis of the TripoliWest LT-HT-MED plant. Desalination. 2003; 152: (1) 191-194. [DOI:10.1016/S0011-9164(02)01062-7]