مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل انرژی و ارزیابی سیستم نوین ترکیبی ذخیره‌سازی انرژی هوای فشرده و تلمبه ذخیره‌ای

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه تخصصی مهندسی انرژی و اقتصاد، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه سازه‌های دریایی، دانشکده فنی و مهندسی، واحد علوم و تحقیقت، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
به‌علت محدودیت و مشکلات زیست‌محیطی سوخت‌های فسیلی، استفاده از سیستم‌های انرژی تجدیدپذیر امری ضروری و اجتناب‌ناپذیر است اما توسعه استفاده از این سیستم‌ها به‌جهت طبیعت ناپایدار آن‌ها نیازمند سیستم‌های ذخیره‌سازی انرژی است. سیستم‌های ذخیره‌سازی انرژی هوای فشرده و تلمبه ذخیره‌ای از نظر توان و مدت زمان ذخیره‌سازی پتانسیل بالایی برای کاربرد به‌همراه سیستم‌های انرژی تجدیدپذیر دارند اما هردو محدودیت‌هایی از نظر زیست‌محیطی و محل احداث دارند. سیستم ترکیبی ذخیره‌سازی انرژی هوای فشرده و تلمبه ذخیره‌ای با داشتن مزایای هر دو سیستم گزینه مناسبی برای کاربرد گسترده است. تاکنون پژوهش‌های کم‌تری به تحلیل و بررسی این سیستم ترکیبی پرداخته‌اند و از این جهت روابط میان پارامترهای سیستم با یکدیگر و بازدهی سیستم نیاز به بررسی بیش‌تری دارد. علاوه‌بر این، سیستم‌های ترکیبی ذخیره‌سازی انرژی هوای فشرده و تلمبه ذخیره‌ای که در تحقیقات پیشین ارئه شده است دارای دو مشکل است؛ تبخیر آب و محدودیت در فشار عملیاتی سیستم. در مقاله حاضر سیستم ترکیبی نوینی ارائه شده است که در آن با اصلاح ساختار سیستم‌های پیشین، میزان تبخیر آب به حداقل می‌رسد و همچنین محدودیت فشار عملیاتی سیستم را فناوری فشرده‌سازی موجود تعیین می‌کند. پژوهش حاضر نشان داد نسبت حجم هوا به حجم مخزن فشاربالا بیش‌ترین تاثیر را بر بازدهی سیستم دارد و یک پارامتر تعیین‌کننده است. میزان انرژی صرفه‌جویی شده در سیستم پژوهش حاضر نسبت به پژوهش‌های پیشین قابل توجه است و بازدهی 90 درصد قابل دست‌یابی است. تحلیل انرژی مقاله حاضر تاثیر پارامترها بر یکدیگر و محدودیت‌های آن‌ها را تعیین کرد تا بدین‌وسیله مسیر طراحی و امکان‌سنجی آن هموار شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Energy analysis and evaluation of an innovative hybrid compressed air and pumped hydroelectric energy storage system

نویسندگان English

Majid Khazali 1
Farhood Azarsina 2
Alireza Haj MollaAli Kani 1
1 Department of Energy Engineering and Economy, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Marine Structures, Faculty of Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
چکیده English

Concerning the limitations and environmental problems of fossil fuels, the use of renewable energy systems is necessary and inevitable, but the development of the use of these systems due to their unsustainable nature requires energy storage systems. Compressed air energy storage systems and pumped hydroelectric have a high potential for applying renewable energy systems in terms of power and storage time, but both have environmental and site limitations. The hybrid system of compressed air energy storage and pumped hydroelectric with the advantages of both systems is suitable for wide application. So far, less research has been done to analyze this hybrid system, and therefore the relationship between system parameters and system efficiency required further investigation. Also, the combined systems presented in previous research have two problems; Water evaporation and limitations in system operating pressure. In this paper, a new hybrid system is presented in which the rate of water evaporation is minimized by modifying the structure of the previous systems, and also the limitation of the operating pressure is determined by the existing compression technology. The present study showed that the ratio of air volume to high-pressure tank volume has the greatest effect on system efficiency and is a determining parameter. The amount of energy saved in the current research system is significant compared to previous researches and a roundtrip efficiency of 90% can be obtained. The energy analysis of the present paper determined the parameterchr('39')s interaction and their limitations in order to pave the way for design and feasibility.

کلیدواژه‌ها English

energy storage
compressed air
pumped hydroelectric
hybrid energy system
Denholm P, Mai T. Timescales of energy storage needed for reducing renewable energy curtailment. Renewable Energy. 2019;130:388-399. [DOI:10.1016/j.renene.2018.06.079]
Denholm P, Mai T. Timescales of energy storage needed for reducing renewable energy curtailment. Renewable Energy. 2019;130:388-399. [DOI:10.1016/j.renene.2018.06.079]
Khazali M, kaabi Nejadian A. A study on the compressed air energy storage system. Mechanical Engineering Journal. 2020;29(3):47-59.
Khazali M, kaabi Nejadian A. A study on the compressed air energy storage system. Mechanical Engineering Journal. 2020;29(3):47-59.
Akinyele DO, Rayudu RK. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments. 2014;8:74-91. [DOI:10.1016/j.seta.2014.07.004]
Akinyele DO, Rayudu RK. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments. 2014;8:74-91. [DOI:10.1016/j.seta.2014.07.004]
Al-hadhrami LM, Alam M. Pumped hydro energy storage system : A technological review. 2015;44:586-598. [DOI:10.1016/j.rser.2014.12.040]
Al-hadhrami LM, Alam M. Pumped hydro energy storage system : A technological review. 2015;44:586-598. [DOI:10.1016/j.rser.2014.12.040]
Dursun B, Alboyaci B. The contribution of wind-hydro pumped storage systems in meeting Turkey ' s electric energy demand. Renewable and Sustainable Energy Reviews. 2010;14(7):1979-1988. [DOI:10.1016/j.rser.2010.03.030]
Dursun B, Alboyaci B. The contribution of wind-hydro pumped storage systems in meeting Turkey ' s electric energy demand. Renewable and Sustainable Energy Reviews. 2010;14(7):1979-1988. [DOI:10.1016/j.rser.2010.03.030]
Wang Z, Carriveau R, Ting DSK, Xiong W, Wang Z. A review of marine renewable energy storage. International Journal of Energy Research. 2019;(September 2018). [DOI:10.1002/er.4444]
Wang Z, Carriveau R, Ting DSK, Xiong W, Wang Z. A review of marine renewable energy storage. International Journal of Energy Research. 2019;(September 2018). [DOI:10.1002/er.4444]
Khazali M, Abdalisousan A. An Overview of Novel Energy Storage Systems with Air Compression Method. Iranian journal of Energy. 2020;23(1):47-82.
Khazali M, Abdalisousan A. An Overview of Novel Energy Storage Systems with Air Compression Method. Iranian journal of Energy. 2020;23(1):47-82.
Wolf D, Budt M. LTA-CAES - A low-temperature approach to Adiabatic Compressed Air Energy Storage. Applied Energy. 2014;125:158-164. [DOI:10.1016/j.apenergy.2014.03.013]
Wolf D, Budt M. LTA-CAES - A low-temperature approach to Adiabatic Compressed Air Energy Storage. Applied Energy. 2014;125:158-164. [DOI:10.1016/j.apenergy.2014.03.013]
Luo X, Wang J, Krupke C, Wang Y, Sheng Y, Li J, et al. Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied Energy. 2016;162:589-600. [DOI:10.1016/j.apenergy.2015.10.091]
Luo X, Wang J, Krupke C, Wang Y, Sheng Y, Li J, et al. Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied Energy. 2016;162:589-600. [DOI:10.1016/j.apenergy.2015.10.091]
Li Y, Gao W, Ruan Y, Ushifusa Y. The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan. Energy. 2018;164:811-821. [DOI:10.1016/j.energy.2018.09.029]
Li Y, Gao W, Ruan Y, Ushifusa Y. The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan. Energy. 2018;164:811-821. [DOI:10.1016/j.energy.2018.09.029]
Zhang Y, Xu Y, Guo H, Zhang X, Guo C, Chen H. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations. Renewable Energy. 2018;125:121-132. [DOI:10.1016/j.renene.2018.02.058]
Zhang Y, Xu Y, Guo H, Zhang X, Guo C, Chen H. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations. Renewable Energy. 2018;125:121-132. [DOI:10.1016/j.renene.2018.02.058]
Guo H, Xu Y, Chen H, Zhou X. Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Conversion and Management. 2016;115:167-177. [DOI:10.1016/j.enconman.2016.01.051]
Guo H, Xu Y, Chen H, Zhou X. Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Conversion and Management. 2016;115:167-177. [DOI:10.1016/j.enconman.2016.01.051]
Khalil KM, Ahmad A, Mahmoud S, Al-Dadah RK. Liquid air/nitrogen energy storage and power generation system for micro-grid applications. Journal of Cleaner Production. 2017;164:606-617. [DOI:10.1016/j.jclepro.2017.06.236]
Khalil KM, Ahmad A, Mahmoud S, Al-Dadah RK. Liquid air/nitrogen energy storage and power generation system for micro-grid applications. Journal of Cleaner Production. 2017;164:606-617. [DOI:10.1016/j.jclepro.2017.06.236]
Guizzi GL, Manno M, Tolomei LM, Vitali RM. Thermodynamic analysis of a liquid air energy storage system. Energy. 2015;93:1639-1647. [DOI:10.1016/j.energy.2015.10.030]
Guizzi GL, Manno M, Tolomei LM, Vitali RM. Thermodynamic analysis of a liquid air energy storage system. Energy. 2015;93:1639-1647. [DOI:10.1016/j.energy.2015.10.030]
Xie C, Hong Y, Ding Y, Li Y, Radcliffe J. An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study. Applied Energy. 2018;225(April):244-257. [DOI:10.1016/j.apenergy.2018.04.074]
Xie C, Hong Y, Ding Y, Li Y, Radcliffe J. An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study. Applied Energy. 2018;225(April):244-257. [DOI:10.1016/j.apenergy.2018.04.074]
Farres-Antunez P, Xue H, White AJ. Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. Journal of Energy Storage. 2018;18(April):90-102. [DOI:10.1016/j.est.2018.04.016]
Farres-Antunez P, Xue H, White AJ. Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. Journal of Energy Storage. 2018;18(April):90-102. [DOI:10.1016/j.est.2018.04.016]
Nabat MH, Zeynalian M, Razmi AR, Arabkoohsar A, Soltani M. Energy, exergy, and economic analyses of an innovative energy storage system; liquid air energy storage (LAES) combined with high-temperature thermal energy storage (HTES). Energy Conversion and Management. 2020;226(May):113486. [DOI:10.1016/j.enconman.2020.113486]
Nabat MH, Zeynalian M, Razmi AR, Arabkoohsar A, Soltani M. Energy, exergy, and economic analyses of an innovative energy storage system; liquid air energy storage (LAES) combined with high-temperature thermal energy storage (HTES). Energy Conversion and Management. 2020;226(May):113486. [DOI:10.1016/j.enconman.2020.113486]
Kantharaj B, Garvey S, Pimm A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air. Sustainable Energy Technologies and Assessments. 2015;11:159-164. [DOI:10.1016/j.seta.2014.11.002]
Kantharaj B, Garvey S, Pimm A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air. Sustainable Energy Technologies and Assessments. 2015;11:159-164. [DOI:10.1016/j.seta.2014.11.002]
An B, Chen J, Deng Z, Zhang T, Wang J, Yang L, et al. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage. Energy Conversion and Management. 2020;226(June):113520. [DOI:10.1016/j.enconman.2020.113520]
An B, Chen J, Deng Z, Zhang T, Wang J, Yang L, et al. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage. Energy Conversion and Management. 2020;226(June):113520. [DOI:10.1016/j.enconman.2020.113520]
Kim YM, Shin DG, Favrat D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy. 2011;36(10):6220-6233. [DOI:10.1016/j.energy.2011.07.040]
Kim YM, Shin DG, Favrat D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy. 2011;36(10):6220-6233. [DOI:10.1016/j.energy.2011.07.040]
Wang Z, Ting DSK, Carriveau R, Xiong W, Wang Z. Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system. Journal of Energy Storage. 2016;5:203-211. [DOI:10.1016/j.est.2016.01.002]
Wang Z, Ting DSK, Carriveau R, Xiong W, Wang Z. Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system. Journal of Energy Storage. 2016;5:203-211. [DOI:10.1016/j.est.2016.01.002]
Klar R, Steidl B, Aufleger M. A floating energy storage system based on fabric. Ocean Engineering. 2018;165(July):328-335. [DOI:10.1016/j.oceaneng.2018.07.051]
Klar R, Steidl B, Aufleger M. A floating energy storage system based on fabric. Ocean Engineering. 2018;165(July):328-335. [DOI:10.1016/j.oceaneng.2018.07.051]
Yao E, Wang H, Xi G. A Novel Pumped Hydro Combined with Compressed Air Energy. In: Letcher TM, editor. Storing Energy. New York: Elsevier; 2016. page 155-166. [DOI:10.1016/B978-0-12-803440-8.00008-7]
Yao E, Wang H, Xi G. A Novel Pumped Hydro Combined with Compressed Air Energy. In: Letcher TM, editor. Storing Energy. New York: Elsevier; 2016. page 155-166. [DOI:10.1016/B978-0-12-803440-8.00008-7]
Heidenreich DC, inventor; EBO Group, Inc., assignee. COMPRESSED AIR PUMPED HYDRO ENERGY STORAGE AND DISTRIBUTION SYSTEM. United States Patent US 7281371B1. 2007 Oct 16.
Heidenreich DC, inventor; EBO Group, Inc., assignee. COMPRESSED AIR PUMPED HYDRO ENERGY STORAGE AND DISTRIBUTION SYSTEM. United States Patent US 7281371B1. 2007 Oct 16.
Laugier A, Garai J. Derivation of the ideal gas law. Journal of Chemical Education. 2007;84(11):1832-1833. [DOI:10.1021/ed084p1832]
Laugier A, Garai J. Derivation of the ideal gas law. Journal of Chemical Education. 2007;84(11):1832-1833. [DOI:10.1021/ed084p1832]
Sposito G, Chu SY. Internal Energy Balance and the Richards Equation. Soil Science Society of America Journal. 1982;46(5):889-893. [DOI:10.2136/sssaj1982.03615995004600050001x]
Sposito G, Chu SY. Internal Energy Balance and the Richards Equation. Soil Science Society of America Journal. 1982;46(5):889-893. [DOI:10.2136/sssaj1982.03615995004600050001x]
Erlichson H. Internal energy in the first law of thermodynamics. American Journal of Physics. 1984;52(7):623-625. [DOI:10.1119/1.13601]
Erlichson H. Internal energy in the first law of thermodynamics. American Journal of Physics. 1984;52(7):623-625. [DOI:10.1119/1.13601]
Cengel YA, Boles MA. Thermodynamics; an Engineering Approach. 8th ed. New York: McGraw-Hill Education; 2015.
Cengel YA, Boles MA. Thermodynamics; an Engineering Approach. 8th ed. New York: McGraw-Hill Education; 2015.
Bi J, Jiang T, Chen W, Ma X. Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment. Energy and Power Engineering. 2013;05(04):26-30. [DOI:10.4236/epe.2013.54B005]
Bi J, Jiang T, Chen W, Ma X. Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment. Energy and Power Engineering. 2013;05(04):26-30. [DOI:10.4236/epe.2013.54B005]
Villela D, Kasinathan VV, De Valle S, Alvarez M, Frantziskonis G, Deymier P, et al. Compressed-air energy storage systems for stand-alone off-grid photovoltaic modules. In: Conference Record of the IEEE Photovoltaic Specialists Conference. 2010. page 962-967. [DOI:10.1109/PVSC.2010.5614596]
Villela D, Kasinathan VV, De Valle S, Alvarez M, Frantziskonis G, Deymier P, et al. Compressed-air energy storage systems for stand-alone off-grid photovoltaic modules. In: Conference Record of the IEEE Photovoltaic Specialists Conference. 2010. page 962-967. [DOI:10.1109/PVSC.2010.5614596]