مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بهبود خم پذیری لوله های تیتانیومی خالص با استفاده از شکل دهی مقاومتی و ساچمه های فولادی به عنوان ماندرل

نوع مقاله : پژوهشی اصیل

نویسندگان
بابل، دانشگاه صنعتی نوشیروانی بابل، دانشکده مهندسی مکانیک
چکیده
در این مقاله، خمکاری لوله­های تیتانیومی با استفاده از ساچمه­های فولادی در سایزهای mm5/mm85/0 و گرم­کاری مقاومتی با روش­های تجربی و شبیه­سازی بررسی شده است. برای انجام آزمایش­ها، لوله تیتانیوم گرید 2 با قطر خارجی mm4/25 و ضخامت mm5/0 استفاده شده و برای جلوگیری از خروج ساچمه و اعمال فشار در دو انتهای لوله، درپوش­های مسدود کننده دو سر لوله، طراحی و استفاده شده است. جهت اعمال دما در خمکاری کششی دورانی لوله­ها، کابل­های جریان الکتریکی به دو طرف لوله متصل گردید و آزمایش­هایی در دماهای محیط، ℃100، ℃200، ℃300 و ℃400 با نسبت خم 8/1 و زاویه خم °90 انجام گردید. پس از انجام آزمایش­ها، اعوجاج سطح مقطع، چروک، پارگی و توزیع ضخامت لوله­های خمکاری شده مورد بررسی قرار گرفت. نتایج بدست آمده از این مقاله نشان داد که در صورت خمکاری در دمای محیط با ساچمه و بدون ساچمه­های فلزی، لوله­ها قابل خمکاری نبودند. در فرآیند خمکاری با سرعت ثابت 8/0 رادیان بر ثانیه، با قرارگیری ساچمه­های فلزی درون لوله و افزایش دما به دماهای ℃100، ℃200 و ℃300 ضخیم­شدگی در ناحیه داخلی خم 8/9% کاهش یافته و نازک­شدگی در دیواره خارجی خم به میزان 4/8% افزایش می­یابد. همچنین عیب پارگی در دمای ℃400 با تغییر سرعت خمکاری از 8/0 به 4/0رادیان بر ثانیه برطرف شد. به دلیل افزایش فشار ناشی از ساچمه­های فولادی در منطقه خم، اعوجاج سطح مقطع در لوله­ها به میزان 4/10% کاهش یافت. لوله­هایی که در دمای ℃300 به همراه ساچمه­های فولادی خم شدند دارای بهترین شرایط خم و کمترین میزان عیب بودند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Improvement of rotary draw bending of commercial pure titanium tubes with resistance deformation and using steel ball

نویسندگان English

Fatemeh Taghizadeh Rami
Majid Elyasi
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده English

In this study, bending of titanium tubes using steel balls in 0.5 and 0.85 mm sizes and resistance heating with experimental and simulation methods have been investigated. In order to apply temperature in rotatory draw bending of tubes, electric current cables were connected to both sides of the tube, and experiments were performed at room temperatures, 100℃, 200℃, 300℃ and 400 with a bending ratio of 1.8 and a bending angle of 90 ° was done. After the experiments, cross-sectional distortion, wrinkles, cracking and thickness distribution of bent tubes were investigated. The results of this study showed that in the case of bending at room temperature with and without metal balls, the tubes could not be bent. In the bending process with a constant speed of 0.8 Rad/s, by placing metal balls inside the tube and increasing the temperature 100℃, 200℃ and 300℃, the thickening in the intrados of ​​the bent tube decreased by 9.8% and the thinning at the extrados of the bent tube increased by 8.4%. Also, by changing the bending speed from 0.8 to 0.4 Rad/s the cracking defect was eliminated at 400. Due to increased pressure due to steel balls in bending area, cross section distortion in tubes decreased by 10.4%. The best bending conditions and the least amount of defects were obtained at 300℃ with steel balls.

کلیدواژه‌ها English

Steel balls
Resistance heating
Cross-sectional distortion
wrinkling
thickness distribution
Cracking
E. Simonetto, G. Venturato, A. Ghiotti and S. Bruschi, "Modelling of hot rotary draw bending for thin-walled titanium alloy tubes.," International Journal of Mechanical Sciences, 2018;148:698-706. [DOI:10.1016/j.ijmecsci.2018.09.037]
E. Simonetto, G. Venturato, A. Ghiotti and S. Bruschi, "Modelling of hot rotary draw bending for thin-walled titanium alloy tubes.," International Journal of Mechanical Sciences, 2018;148:698-706. [DOI:10.1016/j.ijmecsci.2018.09.037]
M. Gregory, Tube Forming Processes: A Comprehensive Guide, pp. 72-110, Dearborn, Michigan, Society of Manufacturing Engineers, 2003.
M. Gregory, Tube Forming Processes: A Comprehensive Guide, pp. 72-110, Dearborn, Michigan, Society of Manufacturing Engineers, 2003.
H. Masoumi, Y. Mirbagheri, R. Jafari Nedoushan, M. Salem and M. Kalantari, "Effect of mandrel, its clearance and pressure die on tube bending process via rotary draw bending method," Int J of Advanced Design and Manufacturing Technology, vol. 5, no. 5, pp. 47-52, 2012.
H. Masoumi, Y. Mirbagheri, R. Jafari Nedoushan, M. Salem and M. Kalantari, "Effect of mandrel, its clearance and pressure die on tube bending process via rotary draw bending method," Int J of Advanced Design and Manufacturing Technology, vol. 5, no. 5, pp. 47-52, 2012.
L. LĂZĂRESCU, "Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending," Int J Advanced Manufacturing of Technology, pp. 64:85-91, 2013. [DOI:10.1007/s00170-012-3992-8]
L. LĂZĂRESCU, "Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending," Int J Advanced Manufacturing of Technology, pp. 64:85-91, 2013. [DOI:10.1007/s00170-012-3992-8]
رجبی، محمدرضا؛ رضایی‌زاده، مسعود؛ احمدی بروغنی، سید یوسف؛ "ارائه روش خمکاری لوله‌ها به کمک ماندرل سیمی به عنوان روشی جدید" ، نشریه علوم کاربردی و محاسباتی در مکانیک، جلد 29، شماره2، صفحه119-128، 1397. [DOI:10.22067/fum-mech.v28i1.37810]
رجبی، محمدرضا؛ رضایی‌زاده، مسعود؛ احمدی بروغنی، سید یوسف؛ "ارائه روش خمکاری لوله‌ها به کمک ماندرل سیمی به عنوان روشی جدید" ، نشریه علوم کاربردی و محاسباتی در مکانیک، جلد 29، شماره2، صفحه119-128، 1397. [DOI:10.22067/fum-mech.v28i1.37810]
Song Chao Shi, Lian Fa Yang and Chen Guo, "Deformation behavior of tube rotary draw bending filled with steel balls," Advanced Materials Research, Vols. 328-330, pp. 1403-1407, 2011. [DOI:10.4028/www.scientific.net/AMR.328-330.1403]
Song Chao Shi, Lian Fa Yang and Chen Guo, "Deformation behavior of tube rotary draw bending filled with steel balls," Advanced Materials Research, Vols. 328-330, pp. 1403-1407, 2011. [DOI:10.4028/www.scientific.net/AMR.328-330.1403]
C.C. Zhao, G.J. Dong, H. Xiao and Y.S. Wang, Journal of Mechanical Engineering, vol. 45, no. 8, p. 255 , 2009 (In Chinese). [DOI:10.3901/JME.2009.08.255]
C.C. Zhao, G.J. Dong, H. Xiao and Y.S. Wang, Journal of Mechanical Engineering, vol. 45, no. 8, p. 255 , 2009 (In Chinese). [DOI:10.3901/JME.2009.08.255]
S.Q. Chen, "Research on a new process of filler push bending for very thin metal tubes," (MS.Dalian University of Technology, China), p. 12, 2010 (In Cinese). [DOI:10.1115/MSEC2010-34278]
S.Q. Chen, "Research on a new process of filler push bending for very thin metal tubes," (MS.Dalian University of Technology, China), p. 12, 2010 (In Cinese). [DOI:10.1115/MSEC2010-34278]
J. Yang, B. Jeon, The Tube Bending Technology of a Hydroforming Process from an Automotive Part, Journal of Materials Processing Technology, Vol. 111, Issues. 1-3, pp. 175-181, 2001. [DOI:10.1016/S0924-0136(01)00505-2]
J. Yang, B. Jeon, The Tube Bending Technology of a Hydroforming Process from an Automotive Part, Journal of Materials Processing Technology, Vol. 111, Issues. 1-3, pp. 175-181, 2001. [DOI:10.1016/S0924-0136(01)00505-2]
G. J. Collie, R. J. Higgins, I. Black; "Modelling and Predicting the Deformed Geometry of Thick-walled Pipes Subjected to Induction Bending," Proc. IMechE Part E: J. Mater. Design App. 2010, 224 (4), 177-189. [DOI:10.1243/14644207JMDA314]
G. J. Collie, R. J. Higgins, I. Black; "Modelling and Predicting the Deformed Geometry of Thick-walled Pipes Subjected to Induction Bending," Proc. IMechE Part E: J. Mater. Design App. 2010, 224 (4), 177-189. [DOI:10.1243/14644207JMDA314]
M. Bach, L. Degenkolb, F. Reuther, V. Psyk, R. Demuth and M. Werner; "Conductive heating during press hardening by hot metal gas forming for curved complex part geometries," Metals, 2020, 10, 1104. [DOI:10.3390/met10081104]
M. Bach, L. Degenkolb, F. Reuther, V. Psyk, R. Demuth and M. Werner; "Conductive heating during press hardening by hot metal gas forming for curved complex part geometries," Metals, 2020, 10, 1104. [DOI:10.3390/met10081104]
Y. Ding and M. Yetisir; "Residual stress modeling of warm-bent tight-radius candu feeder bends," 2008 ASME Pressure Vessels and Piping Division Conference, Chicago, lllinoid, USA. [DOI:10.1115/PVP2008-61113]
Y. Ding and M. Yetisir; "Residual stress modeling of warm-bent tight-radius candu feeder bends," 2008 ASME Pressure Vessels and Piping Division Conference, Chicago, lllinoid, USA. [DOI:10.1115/PVP2008-61113]
Y. Ma, Y. Xu, Sh. Zhang, D. Chen, A. A. EL-Aty, J. Li, Zh. Zhao and G. Chen; "The effect of tube bending, heat treatment and loading paths on pricess responses of hydroforming for automobile intercooler pipe: numerical and experimental investigations," Int J Adv Manuf Technol, 2017. [DOI:10.1007/s00170-016-9920-6]
Y. Ma, Y. Xu, Sh. Zhang, D. Chen, A. A. EL-Aty, J. Li, Zh. Zhao and G. Chen; "The effect of tube bending, heat treatment and loading paths on pricess responses of hydroforming for automobile intercooler pipe: numerical and experimental investigations," Int J Adv Manuf Technol, 2017. [DOI:10.1007/s00170-016-9920-6]
E. Simonetto, A. Ghiotti, S. Bruschi, "High accuracy direct hot bending of hollow profiles", Manufacturing Letters. 27: 63-66, 2021. [DOI:10.1016/j.mfglet.2020.12.005]
E. Simonetto, A. Ghiotti, S. Bruschi, "High accuracy direct hot bending of hollow profiles", Manufacturing Letters. 27: 63-66, 2021. [DOI:10.1016/j.mfglet.2020.12.005]
M. Roein, M. Elyasi, MJ. Mirnia; "Introduction of a new method for bending of AISI 304L stainless steel micro-tubes with micro-wire mandrel", J Manuf Process 2021;66:27-38. [DOI:10.1016/j.jmapro.2021.03.064]
M. Roein, M. Elyasi, MJ. Mirnia; "Introduction of a new method for bending of AISI 304L stainless steel micro-tubes with micro-wire mandrel", J Manuf Process 2021;66:27-38. [DOI:10.1016/j.jmapro.2021.03.064]
Standard Test Methods for Tension Testing of Metallic Materials, American Association State, Highway and Transportation Officials Standard, AASHTO No.: T68, An American National Standard. Last previous edition approved 2016 as E8/E8M - 16. [DOI:10.1520/E0008_E0008M-16A]
Standard Test Methods for Tension Testing of Metallic Materials, American Association State, Highway and Transportation Officials Standard, AASHTO No.: T68, An American National Standard. Last previous edition approved 2016 as E8/E8M - 16. [DOI:10.1520/E0008_E0008M-16A]
F. Song, H. Yang, M. Zhan, G. Li; "Springback prediction of thick-walled high-strength titanium tube bending", Chinese Journal of Aeronautics. 26(5): 1336-1345, 2013. [DOI:10.1016/j.cja.2013.07.039]
F. Song, H. Yang, M. Zhan, G. Li; "Springback prediction of thick-walled high-strength titanium tube bending", Chinese Journal of Aeronautics. 26(5): 1336-1345, 2013. [DOI:10.1016/j.cja.2013.07.039]
Zh. Zhang, H. Yang, H. Li, Zh. Tao, D. Wang; "Thermo-mechanical coupled 3D-FE modeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube", Int J Adv Manuf Technol. 2014; 72:1187-1203. [DOI:10.1007/s00170-014-5709-7]
Zh. Zhang, H. Yang, H. Li, Zh. Tao, D. Wang; "Thermo-mechanical coupled 3D-FE modeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube", Int J Adv Manuf Technol. 2014; 72:1187-1203. [DOI:10.1007/s00170-014-5709-7]