مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل تجربی و عددی میدان جریان پایین دست یک ملخ جلوبرنده در شرایط استاتیکی با ارائه روابط نیمه‌تجربی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 استادیار گروه مهندسی هوافضا - دانشگاه جامع امام حسین (ع)
2 استادیار، دانشکده مهندسی هوافضا، دانشگاه سمنان
3 پژوهشگر، مرکز تحقیقات ملّی آیرودینامیک قدر، دانشگاه جامع امام حسین (ع)
4 دانشیار، مرکز تحقیقات ملّی آیرودینامیک قدر، دانشگاه جامع امام حسین (ع)
چکیده
در مقاله حاضر به بررسی آزمایشگاهی میدان جریان در پایین‌دست یک ملخ جلوبرنده در اعداد رینولدز کم و در شرایط عملکرد استاتیکی (سرعت پروازی صفر) پرداخته می‌شود. این ملخ، قابلیت استفاده در پرنده‌های بدون سرنشین را دارد. قطر ملخ 56 سانتیمتر است و در دورهای 2550 تا 5670 دور بر دقیقه مورد آزمایش قرار می‌گیرد. نتایج آزمایش نشان می‌دهد که افزایش دور ملخ باعث افزایش سرعت القایی جریان می‌شود. ضریب چرخش جریان و ضریب جریان محوری در دورهای مختلف، با افزایش شعاع ملخ کاهش می‌یابد. نتایج تجربی سرعت مطلق جریان چرخشی در پایین‌دست لبه فرار ایرفویل پره ملخ نشان می‌دهد که در شرایط استاتیکی، توزیع شعاعی سرعت با دقت مناسبی شبیه به تئوری گردابه آزاد جریان است. برای تغییرات نسبت چرخش جریان و ضریب جریان محوری در پایین دست پره ملخ در شرایط استاتیکی به ازای r/R<0.8 روابط نیمه‌تجربی پیشنهاد شده است. همچنین ملخ به صورت عددی شبیه‌سازی شده است. درصد انحراف معیار نسبی نتایج عددی و تجربی در نیروی جلوبرنده ملخ 4/0 درصد و درصد انحراف معیار نسبی در توان مصرفی 1/4 درصد است. مقدار ضریب نمایی n برای پیش بینی عددی سرعت محوری پشت پره ملخ در شرایط استاتیکی تا محدوده 80 درصدی شعاع پره ملخ، با نتایج تجربی دارای 7/7 درصد انحراف معیار نسبی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and Numerical Analysis of a Propeller Downstream Flow at Static Conditions and Determination of Semi-Empirical Equations

نویسندگان English

AliReza Rabiee 1
Elyas Lekzian 2
Amirhossein Hossein 3
Farhad Ghadak 4
Mohsen Nahlegah 3
1 Assistant Professor, Aerospace Engineering Department, Imam Hosein University
2 Assistant Professor, Aerospace Faculty, Semnan University
3 Research Assistant, Qadr Aerodynamics Research Center, Imam Hosein University
4 Associate, Imam Hossein Comprehensive University
چکیده English

In the current paper, downstream flow field of a propeller at low Reynolds numbers and at static conditions (zero flight speed) is investigated experimentally. This propeller can be utilized in UAVs. Propeller diameter is 56 centimeter and it is investigated at 2550 to 5670 rpm experimentally. Experiment results show that propeller rpm increasing, increases induction velocity. Flow swirl ratio and axial flow coefficient decrease along propeller radius at different propeller rpm. Experimental results of absolute velocity of swirl flow at the propeller airfoil trailing edge downstream is fairly similar to the free vortex flow theory at static condition along the blade radius. At static condition for r/R<0.8, semi-empirical equations are suggested for variation of flow swirl ratio and axial flow coefficient at downstream of propeller. The propeller is also simulated with numerical simulations. Relative standard deviation of numerical and experimental results for propeller thrust and power are 0.4 and 4.1, respectively. The exponential coefficient (n) which predicts numerical axial flow downstream of propeller for r/R<0.8 has a 7.7 relative standard deviation with experimental results at static condition.

کلیدواژه‌ها English

Propeller
Swirl Flow
Free Vortex Distribution
Propeller Static Operation
Roosenboom EW, Heider A, Schröder A. Investigation of the propeller slipstream with particle image velocimetry. Journal of aircraft. 2009;46(2):442-9. [DOI:10.2514/1.33917]
Roosenboom EW, Heider A, Schröder A. Investigation of the propeller slipstream with particle image velocimetry. Journal of aircraft. 2009;46(2):442-9. [DOI:10.2514/1.33917]
Roosenboom EW, Schröder A. Flowfield investigation at propeller thrust reverse. Journal of Fluid Engineering, 2010;132:1-8. [DOI:10.1115/1.4001677]
Roosenboom EW, Schröder A. Flowfield investigation at propeller thrust reverse. Journal of Fluid Engineering, 2010;132:1-8. [DOI:10.1115/1.4001677]
Roosenboom EW, Stürmer A, Schröder A. Advanced experimental and numerical validation and analysis of propeller slipstream flows. Journal of Aircraft. 2010;47(1):284-91. [DOI:10.2514/1.45961]
Roosenboom EW, Stürmer A, Schröder A. Advanced experimental and numerical validation and analysis of propeller slipstream flows. Journal of Aircraft. 2010;47(1):284-91. [DOI:10.2514/1.45961]
Fu W, Li J, Wang H. Numerical simulation of propeller slipstream effect on a propeller-driven unmanned aerial vehicle. Procedia Engineering. 2012;31:150-5. [DOI:10.1016/j.proeng.2012.01.1005]
Fu W, Li J, Wang H. Numerical simulation of propeller slipstream effect on a propeller-driven unmanned aerial vehicle. Procedia Engineering. 2012;31:150-5. [DOI:10.1016/j.proeng.2012.01.1005]
Xu H-y, Ye Z-y, Shi A-m. Numerical study of propeller slipstream based on unstructured dynamic overset grids. Journal of Aircraft. 2012;49(2):384-9. [DOI:10.2514/1.C031097]
Xu H-y, Ye Z-y, Shi A-m. Numerical study of propeller slipstream based on unstructured dynamic overset grids. Journal of Aircraft. 2012;49(2):384-9. [DOI:10.2514/1.C031097]
Schnell R, Yin J, Voss C, Nicke E. Assessment and optimization of the aerodynamic and acoustic characteristics of a counter rotating open rotor. Journal of Turbomachinary, 2012;134(6):061016-15p. [DOI:10.1115/1.4006285]
Schnell R, Yin J, Voss C, Nicke E. Assessment and optimization of the aerodynamic and acoustic characteristics of a counter rotating open rotor. Journal of Turbomachinary, 2012;134(6):061016-15p. [DOI:10.1115/1.4006285]
Peixun Y, Jiahui P, Junqiang B, Xiao H, Xiang S. Aeroacoustic and aerodynamic optimization of propeller blades. Chinese Journal of Aeronautics. 2020;33(3):826-39. [DOI:10.1016/j.cja.2019.11.005]
Peixun Y, Jiahui P, Junqiang B, Xiao H, Xiang S. Aeroacoustic and aerodynamic optimization of propeller blades. Chinese Journal of Aeronautics. 2020;33(3):826-39. [DOI:10.1016/j.cja.2019.11.005]
Marretta RMA. Different wings flowfields interaction on the wing-propeller coupling. Journal of aircraft. 1997;34(6):740-7. [DOI:10.2514/2.2252]
Marretta RMA. Different wings flowfields interaction on the wing-propeller coupling. Journal of aircraft. 1997;34(6):740-7. [DOI:10.2514/2.2252]
Khan W, Nahon M. Development and validation of a propeller slipstream model for unmanned aerial vehicles. Journal of Aircraft. 2015;52(6):1985-94. [DOI:10.2514/1.C033118]
Khan W, Nahon M. Development and validation of a propeller slipstream model for unmanned aerial vehicles. Journal of Aircraft. 2015;52(6):1985-94. [DOI:10.2514/1.C033118]
Witkowski DP, Lee AK, Sullivan JP. Aerodynamic interaction between propellers and wings. Journal of Aircraft. 1989;26(9):829-36. [DOI:10.2514/3.45848]
Witkowski DP, Lee AK, Sullivan JP. Aerodynamic interaction between propellers and wings. Journal of Aircraft. 1989;26(9):829-36. [DOI:10.2514/3.45848]
Stone RH. Aerodynamic modeling of the wing-propeller interaction for a tail-sitter unmanned air vehicle. Journal of Aircraft. 2008;45(1):198-210. [DOI:10.2514/1.15705]
Stone RH. Aerodynamic modeling of the wing-propeller interaction for a tail-sitter unmanned air vehicle. Journal of Aircraft. 2008;45(1):198-210. [DOI:10.2514/1.15705]
Lakshminarayan VK, Baeder JD. Computational investigation of micro hovering rotor aerodynamics. Journal of the American Helicopter Society. 2010;55(2):22001-15p. [DOI:10.4050/JAHS.55.022001]
Lakshminarayan VK, Baeder JD. Computational investigation of micro hovering rotor aerodynamics. Journal of the American Helicopter Society. 2010;55(2):22001-15p. [DOI:10.4050/JAHS.55.022001]
Favier D, Ettaouil A, Maresca C. Numerical and experimental investigation of isolated propeller wakesin axial flight. Journal of Aircraft. 1989;26(9):837-46. [DOI:10.2514/3.45849]
Favier D, Ettaouil A, Maresca C. Numerical and experimental investigation of isolated propeller wakesin axial flight. Journal of Aircraft. 1989;26(9):837-46. [DOI:10.2514/3.45849]
Patrao AC, Grönstedt T, Avellán R, Lundbladh A. Wake energy analysis method applied to the Boxprop propeller concept. Aerospace Science and Technology. 2018;79:689-700. [DOI:10.1016/j.ast.2018.06.018]
Patrao AC, Grönstedt T, Avellán R, Lundbladh A. Wake energy analysis method applied to the Boxprop propeller concept. Aerospace Science and Technology. 2018;79:689-700. [DOI:10.1016/j.ast.2018.06.018]
Yang Y, Sciacchitano A, Veldhuis LL, Eitelberg G, editors. Experimental investigation of propeller induced ground vortex under headwind condition. 32nd AIAA applied aerodynamics conference; 16-20 June 2014; Atlanta, 2308-22. [DOI:10.2514/6.2014-2308]
Yang Y, Sciacchitano A, Veldhuis LL, Eitelberg G, editors. Experimental investigation of propeller induced ground vortex under headwind condition. 32nd AIAA applied aerodynamics conference; 16-20 June 2014; Atlanta, 2308-22. [DOI:10.2514/6.2014-2308]
Khan W, Nahon M. A propeller model for general forward flight conditions. International Journal of Intelligent Unmanned Systems. 2015; 3(2): 72-92. [DOI:10.1108/IJIUS-06-2015-0007]
Khan W, Nahon M. A propeller model for general forward flight conditions. International Journal of Intelligent Unmanned Systems. 2015; 3(2): 72-92. [DOI:10.1108/IJIUS-06-2015-0007]
Stempin CW. Evaluation of the induced-velocity field of an idealized helicopter rotor. National Aeronautics and Space Adminstration Hamton Langley Research Center, 1945; Washington, 1-27.
Stempin CW. Evaluation of the induced-velocity field of an idealized helicopter rotor. National Aeronautics and Space Adminstration Hamton Langley Research Center, 1945; Washington, 1-27.
Pitt DM, Peters DA. Theoretical prediction of dynamic-inflow derivatives, 6th European Rotorcraft & Powerd Lift Aircraft Forum, 1980; United Kingdom, 47.1-47.18.
Pitt DM, Peters DA. Theoretical prediction of dynamic-inflow derivatives, 6th European Rotorcraft & Powerd Lift Aircraft Forum, 1980; United Kingdom, 47.1-47.18.
Chen R. A Survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics and Control Applications, California, National Aeronautics and Space Adminstration Ames Research Center, 1989; 67p, report No 102219.
Chen R. A Survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics and Control Applications, California, National Aeronautics and Space Adminstration Ames Research Center, 1989; 67p, report No 102219.
Shkarayev S, Moschetta J-M, Bataille B. Aerodynamic design of micro air vehicles for vertical flight. Journal of Aircraft. 2008;45(5):1715-24. [DOI:10.2514/1.35573]
Shkarayev S, Moschetta J-M, Bataille B. Aerodynamic design of micro air vehicles for vertical flight. Journal of Aircraft. 2008;45(5):1715-24. [DOI:10.2514/1.35573]
Larrabee EE. Practical design of minimum induced loss propellers. SAE Transactions. 1979; 88(3): 2053-62. [DOI:10.4271/790585]
Larrabee EE. Practical design of minimum induced loss propellers. SAE Transactions. 1979; 88(3): 2053-62. [DOI:10.4271/790585]
D'Angelo, S., Berardi, F., & Minisci, E. Aerodynamic performances of propellers with parametric considerations on the optimal design. The Aeronautical Journal, 106, 313-320, 2002. [DOI:10.1017/S0001924000096068]
D'Angelo, S., Berardi, F., & Minisci, E. Aerodynamic performances of propellers with parametric considerations on the optimal design. The Aeronautical Journal, 106, 313-320, 2002. [DOI:10.1017/S0001924000096068]
Rabiee A, Ghadak F, Doostdar M. Investigation of Reynolds Number Effect on Dimensionless Coefficients of Three-Hole Yawmeter Probe Using Experimental and SPM Analytical Methods. Modares Mechanical Engineering. 2020;20(7):1829-39.
Rabiee A, Ghadak F, Doostdar M. Investigation of Reynolds Number Effect on Dimensionless Coefficients of Three-Hole Yawmeter Probe Using Experimental and SPM Analytical Methods. Modares Mechanical Engineering. 2020;20(7):1829-39.