مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه‌ی آزمایشگاهی تاثیر عمق آب و فرکانس موج برخوردی بر عملکرد یک مبدل صفحه‌ای (OWSC) تحت شرایط امواج دریای مازندران

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی کارشناسی ارشد مهندسی مکانیک، گروه پژوهشی انرژی‌های دریاپایه، دانشگاه صنعتی نوشیروانی بابل، ایران
2 استاد مهندسی مکانیک، گروه پژوهشی انرژی های دریاپایه، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل
3 دانشجوی دکتری مهندسی مکانیک، گروه پژوهشی انرژی‌های دریاپایه، دانشگاه صنعتی نوشیروانی بابل، ایران
4 دانشجوی کارشناسی مهندسی مکانیک، گروه پژوهشی انرژی‌های دریاپایه، دانشگاه صنعتی نوشیروانی بابل، ایران
چکیده
مبدل‌های انرژی موج صفحه‌ای در مناطق نزدیک ساحل برای تولید برق و پمپاژ آب استفاده می‌شوند. عمق آبخور و فرکانس موج برخوردی، پارامترهایی تاثیرگذار بر عملکرد این دسته از مبدل‌ها می‌باشند. در این مقاله، اثر عمق آبخور و فرکانس موج برخوردی بر عملکرد یک مبدل در مقیاس 1:8 به‌صورت تجربی بررسی شده است. سامانه‌ی انتقال توان مبدل (PTO) هیدرولیکی می‌باشد. همچنین دریای مازندران به‌عنوان دریای هدف انتخاب شد. پس از کالیبراسیون تجهیزات و آنالیز عدم قطعیت، آزمون‌های تجربی در استخر موج دانشگاه صنعتی نوشیروانی بابل و تحت اثر امواج منظم انجام شدند. با توجه به پریود غالب امواج دریای مازندران ([8-4] ثانیه)، پس از مقیاس‌بندی فرود، آزمون‌ها در بازه‌ی پریود [5/2-6/1] ثانیه انجام شدند که معادل بازه‌ی فرکانسی [63/0-4/0] هرتز می‌باشد. همچنین با توجه به اهمیت عمق آبخور مبدل، عملکرد مبدل از عمق آبخور 1/0- (فلپ مغروق) تا 6/0 متر بررسی شد. با توجه به نتایج، در همه‌ی عمق آبخورها، بهترین عملکرد مبدل در پایین‌ترین فرکانس بوده، با افزایش فرکانس عملکرد مبدل کاهش یافته است. بهترین عملکرد مبدل در عمق آبخور بی‌بعد 43/0 (معادل با عمق آبخور 4/0 متر) به‌دست آمد و در عمق آبخورهای بزرگ‌تر و کوچک‌تر توان مبدل کاهش یافت. شایان ذکر است که در عمق آبخور منفی (فلپ مغروق)، مبدل پایین‌ترین عملکرد را دارد. مقادیر بیشینه‌ی دبی، توان و فشار در مقیاس آزمایشگاهی به ترتیب 14/0 لیتر بر ثانیه، 3/21 وات و 8/156 کیلوپاسکال به‌دست آمد که با استفاده از مقیاس‌بندی فرود در مقیاس واقعی، به‌ترتیب 6/24 لیتر بر ثانیه، 9/30 کیلووات و 5/1254 کیلوپاسکال خواهد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Study on The Effect of Water Depth and Incident Wave Frequency on The Performance of a OWSC Imposed to Caspian Sea Wave Conditions

نویسندگان English

Ghazale Sadripour 1
Rouzbeh Shafaghat 2
Behrad Alizadeh Kharkeshi 3
Sina Sadeqi 4
1 MSc. Student, Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran
2 Professor, Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran
3 Ph.D Student in Mechanical Engineering, Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran
4 BSc of Mechanical Engineering, Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran
چکیده English

Flap-type WECs are used On-Shore to generate electricity and pump. The draft depth and incident wave frequency are parameters affecting the performance of this type of converters. In this paper, the effect of water draft depth and incident wave frequency on the performance of a converter at a scale of 1: 8 investigated experimentally. The power take-off system is hydraulic. The Caspian Sea was also selected as the target sea. After calibration and uncertainty analysis, experimental tests performed in the wave-flume of BNUT by regular waves. Considering the period of the Caspian Sea ([4-8] s), Froud scaling, the tests were performed in the period interval of [1.6-2.5] s, which is equivalent to the frequency interval [0.4-0.63 ] Hz. Also, due to the importance of the converter's draft, the converter's performance was evaluated from the draft of -0.1 (submerged flap) to 0.6 m. According to the results, the best converter performance was at the lowest frequency; the converter performance decreased with increasing frequency. The best converter performance was obtained at the dimensionless draft of 0.43 (equivalent to 0.4 m draft), and the converter power was reduced at larger and smaller draft. It is worth noting that at a negative draft (submerged flap), the converter has the lowest performance. The maximum values ​​of flow, power and pressure on a laboratory scale were 0.14 liters per second, 21.3 watts and 156.8 kPa, respectively, which were measured at 18 liters per second, 22.66 kW, respectively, using Froud scaling method. And will be 1249/61 kPa

کلیدواژه‌ها English

Wave Energy
Flap Type Converter
PTO
Experimental Study
power
[1] A. J. Henry, "The hydrodynamics of small seabed mounted bottom hinged wave energy conerverters in shallow water," Queen's University Belfast, 2009.
[1] A. J. Henry, "The hydrodynamics of small seabed mounted bottom hinged wave energy conerverters in shallow water," Queen's University Belfast, 2009.
[2] T. Whittaker and M. Folley, "Nearshore oscillating wave surge converters and the development of Oyster," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370, pp. 345-364, 2012. [DOI:10.1098/rsta.2011.0152]
[2] T. Whittaker and M. Folley, "Nearshore oscillating wave surge converters and the development of Oyster," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370, pp. 345-364, 2012. [DOI:10.1098/rsta.2011.0152]
[3] M. Folley, T. Whittaker, and A. Henry, "The effect of water depth on the performance of a small surging wave energy converter," Ocean Engineering, vol. 34, pp. 1265-1274, 2007. [DOI:10.1016/j.oceaneng.2006.05.015]
[3] M. Folley, T. Whittaker, and A. Henry, "The effect of water depth on the performance of a small surging wave energy converter," Ocean Engineering, vol. 34, pp. 1265-1274, 2007. [DOI:10.1016/j.oceaneng.2006.05.015]
[4] R. Gomes, M. Lopes, J. Henriques, L. Gato, and A. Falcao, "The dynamics and power extraction of bottom-hinged plate wave energy converters in regular and irregular waves," Ocean Engineering, vol. 96, pp. 86-99, 2015. [DOI:10.1016/j.oceaneng.2014.12.024]
[4] R. Gomes, M. Lopes, J. Henriques, L. Gato, and A. Falcao, "The dynamics and power extraction of bottom-hinged plate wave energy converters in regular and irregular waves," Ocean Engineering, vol. 96, pp. 86-99, 2015. [DOI:10.1016/j.oceaneng.2014.12.024]
[5] C. Xu, X. Wang, and Z. Wang, "Experimental Study on the Dynamics of A Bottom-hinged Oscillating Wave Surge Converter," 2016. [DOI:10.2991/icseee-16.2016.38]
[5] C. Xu, X. Wang, and Z. Wang, "Experimental Study on the Dynamics of A Bottom-hinged Oscillating Wave Surge Converter," 2016. [DOI:10.2991/icseee-16.2016.38]
[6] D. Ning, C. Liu, C. Zhang, M. Göteman, H. Zhao, and B. Teng, "Hydrodynamic performance of an oscillating wave surge converter in regular and irregular waves: an experimental study," Journal of Marine Science and Technology, vol. 25, p. 4, 2017.
[6] D. Ning, C. Liu, C. Zhang, M. Göteman, H. Zhao, and B. Teng, "Hydrodynamic performance of an oscillating wave surge converter in regular and irregular waves: an experimental study," Journal of Marine Science and Technology, vol. 25, p. 4, 2017.
[7] Y.-C. Chow, Y.-C. Chang, C.-C. Lin, J.-H. Chen, and S.-Y. Tzang, "Experimental investigations on wave energy capture of two bottom-hinged-flap WECs operating in tandem," Ocean Engineering, vol. 164, pp. 322-331, 2018. [DOI:10.1016/j.oceaneng.2018.06.010]
[7] Y.-C. Chow, Y.-C. Chang, C.-C. Lin, J.-H. Chen, and S.-Y. Tzang, "Experimental investigations on wave energy capture of two bottom-hinged-flap WECs operating in tandem," Ocean Engineering, vol. 164, pp. 322-331, 2018. [DOI:10.1016/j.oceaneng.2018.06.010]
[8] A. Henry, M. Folley, and T. Whittaker, "A conceptual model of the hydrodynamics of an oscillating wave surge converter," Renewable Energy, vol. 118, pp. 965-972, 2018. [DOI:10.1016/j.renene.2017.10.090]
[8] A. Henry, M. Folley, and T. Whittaker, "A conceptual model of the hydrodynamics of an oscillating wave surge converter," Renewable Energy, vol. 118, pp. 965-972, 2018. [DOI:10.1016/j.renene.2017.10.090]
[9] M. Brito, R. M. Ferreira, L. Teixeira, M. G. Neves, and R. B. Canelas, "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, vol. 151, pp. 975-992, 2020. [DOI:10.1016/j.renene.2019.11.094]
[9] M. Brito, R. M. Ferreira, L. Teixeira, M. G. Neves, and R. B. Canelas, "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, vol. 151, pp. 975-992, 2020. [DOI:10.1016/j.renene.2019.11.094]
[10] M. Brito, R. Canelas, O. García-Feal, J. Domínguez, A. Crespo, R. Ferreira, et al., "A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints," Renewable Energy, vol. 146, pp. 2024-2043, 2020. [DOI:10.1016/j.renene.2019.08.034]
[10] M. Brito, R. Canelas, O. García-Feal, J. Domínguez, A. Crespo, R. Ferreira, et al., "A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints," Renewable Energy, vol. 146, pp. 2024-2043, 2020. [DOI:10.1016/j.renene.2019.08.034]
[11] M. Kelly, N. Tom, Y.-H. Yu, A. Wright, and M. Lawson, "Annual performance of the second-generation variable-geometry oscillating surge wave energy converter," Renewable Energy, vol. 177, pp. 242-258, 2021. [DOI:10.1016/j.renene.2020.11.075]
[11] M. Kelly, N. Tom, Y.-H. Yu, A. Wright, and M. Lawson, "Annual performance of the second-generation variable-geometry oscillating surge wave energy converter," Renewable Energy, vol. 177, pp. 242-258, 2021. [DOI:10.1016/j.renene.2020.11.075]
[12] C. Burge, N. Tom, K. Thiagarajan, J. Davis, and N. Nguyen, "Performance Modeling of a Variable-Geometry Oscillating Surge Wave Energy Converter on a Raised Foundation," in International Conference on Offshore Mechanics and Arctic Engineering, 2021, p. V009T09A010. [DOI:10.1115/OMAE2021-62423]
[12] C. Burge, N. Tom, K. Thiagarajan, J. Davis, and N. Nguyen, "Performance Modeling of a Variable-Geometry Oscillating Surge Wave Energy Converter on a Raised Foundation," in International Conference on Offshore Mechanics and Arctic Engineering, 2021, p. V009T09A010. [DOI:10.1115/OMAE2021-62423]
[13] E. Amini, R. Asadi, D. Golbaz, M. Nasiri, S. T. O. Naeeni, M. Majidi Nezhad, et al., "Comparative study of oscillating surge wave energy converter performance: A case study for southern coasts of the Caspian sea," Sustainability, vol. 13, p. 10932, 2021. [DOI:10.3390/su131910932]
[13] E. Amini, R. Asadi, D. Golbaz, M. Nasiri, S. T. O. Naeeni, M. Majidi Nezhad, et al., "Comparative study of oscillating surge wave energy converter performance: A case study for southern coasts of the Caspian sea," Sustainability, vol. 13, p. 10932, 2021. [DOI:10.3390/su131910932]
[14] Q. Li, J. Mi, X. Li, S. Chen, B. Jiang, and L. Zuo, "A self-floating oscillating surge wave energy converter," Energy, vol. 230, p. 120668, 2021. [DOI:10.1016/j.energy.2021.120668]
[14] Q. Li, J. Mi, X. Li, S. Chen, B. Jiang, and L. Zuo, "A self-floating oscillating surge wave energy converter," Energy, vol. 230, p. 120668, 2021. [DOI:10.1016/j.energy.2021.120668]
[15] R. Alamian, R. Shafaghat, S. S. Hosseini, and A. Zainali, "Wave energy potential along the southern coast of the Caspian Sea," International journal of marine energy, vol. 19, pp. 221-234, 2017. [DOI:10.1016/j.ijome.2017.08.002]
[15] R. Alamian, R. Shafaghat, S. S. Hosseini, and A. Zainali, "Wave energy potential along the southern coast of the Caspian Sea," International journal of marine energy, vol. 19, pp. 221-234, 2017. [DOI:10.1016/j.ijome.2017.08.002]
[16] B. Alizadeh Kharkeshi, R. Shafaghat, O. Jahanian, k. Rezanejad, and R. Alamian, "Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale," Modares Mechanical Engineering, vol. 21, pp. 823-834, 2021.
[16] B. Alizadeh Kharkeshi, R. Shafaghat, O. Jahanian, k. Rezanejad, and R. Alamian, "Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale," Modares Mechanical Engineering, vol. 21, pp. 823-834, 2021.
[17] B. Alizadeh Kharkeshi, R. Shafaghat, O. Jahanian, R. Alamian, and K. Rezanejad, "Experimental study on the performance of an oscillating water column by considering the interaction effects of optimal installation depth and dimensionless hydrodynamic coefficients for the Caspian Sea waves characteristics," Ocean Engineering, vol. 256, p. 111513, 2022/07/15/ 2022. [DOI:10.1016/j.oceaneng.2022.111513]
[17] B. Alizadeh Kharkeshi, R. Shafaghat, O. Jahanian, R. Alamian, and K. Rezanejad, "Experimental study on the performance of an oscillating water column by considering the interaction effects of optimal installation depth and dimensionless hydrodynamic coefficients for the Caspian Sea waves characteristics," Ocean Engineering, vol. 256, p. 111513, 2022/07/15/ 2022. [DOI:10.1016/j.oceaneng.2022.111513]
[18] B. Alizadeh Kharkeshi, R. Shafaghat, R. Alamian, and A. H. Aghajani Afghan, "Experimental & Analytical Hydrodynamic Behavior Investigation of an Onshore OWC-WEC Imposed to Caspian Sea Wave Conditions," International Journal of Maritime Technology, vol. 14, pp. 1-12, 2020.
[18] B. Alizadeh Kharkeshi, R. Shafaghat, R. Alamian, and A. H. Aghajani Afghan, "Experimental & Analytical Hydrodynamic Behavior Investigation of an Onshore OWC-WEC Imposed to Caspian Sea Wave Conditions," International Journal of Maritime Technology, vol. 14, pp. 1-12, 2020.
[19] R. Shafaghat, M. Fallahi, B. Alizadeh Kharkeshi, and M. Yousefifard, "Experimental Evaluation of the Effect of Incident Wave Frequency on the Performance of a Dual-chamber Oscillating Water Columns Considering Resonance Phenomenon Occurrence," Iranian (Iranica) Journal of Energy & Environment, vol. 13, pp. 98-110, 2022. [DOI:10.5829/IJEE.2022.13.02.01]
[19] R. Shafaghat, M. Fallahi, B. Alizadeh Kharkeshi, and M. Yousefifard, "Experimental Evaluation of the Effect of Incident Wave Frequency on the Performance of a Dual-chamber Oscillating Water Columns Considering Resonance Phenomenon Occurrence," Iranian (Iranica) Journal of Energy & Environment, vol. 13, pp. 98-110, 2022. [DOI:10.5829/IJEE.2022.13.02.01]