مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی، ساخت و صحه‌گذاری یک محرک الکترومغناطیسی خطی در بازه نیرویی میلی نیوتنی

نوع مقاله : پژوهشی اصیل

نویسندگان
پژوهشکده رانشگرهای فضایی، پژوهشگاه فضایی ایران، تبریز، ایران
چکیده
در سال­های اخیر محرک­های الکترومغناطیسی خطی کاربرد ویژه ­ای در ایجاد حرکت ربات­های کوچک و اعمال نیروهای میلی نیوتنی جهت کالیبراسیون استندهای سنجش تراست رانشگرها یافته است. در این مقاله به طراحی و ساخت یک محرک الکترومغناطیسی خطی با بازه نیرویی میلی نیوتنی پرداخته شده است. دراین راستا، ابتدا روابط تحلیلی برای بدست آوردن پارامترهای میدان مغناطیسی و نیروی لورنتس استخراج شده و سپس، بر اساس معیارهای طراحی حساسیت نیرویی بالا، اتلاف حرارتی پایین و حداقل ابعاد و وزن، مناسب­ترین طراحی محرک الکترومغناطیسی مدنظر تعیین شد. بر اساس مدل طراحی شده، حساسسیت نیرویی تقریباً 1 میلی نیوتن بر آمپر حاصل شده در حالی که اتلاف توان حداکثر 1 میلی وات بود. همچنین کورس حرکتی قابل دسترسی 10 میلی متر بود. در نهایت، یک نمونه واقعی از محرک الکترومغناطیسی خطی ساخته شده و آزمایش­های عملی به منظور صحه­ گذاری محرک الکترومغناطیسی طراحی شده انجام یافتند. بدین منظور از یک ترازوی دقیق با دقت 0.01 گرم و منبع تغذیه با رزولوشن 1 میلی آمپر بهره گرفته شد. نتایج نشان داد که حداکثر اختلاف بین نیروی محاسبه شده و اندازه­ گیری شده 2.5 درصد بود. در نتیجه، مطابقت خوبی بین داده­های تجربی و مقادیر تحلیلی متناظر وجود دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design, Manufacture and Validation of Linear Electromagnetic Actuator with Force Range of Milli Newton

نویسندگان English

Sina Akhbari
Morteza Farhid
Masoud Dehnad
Reza Golzarian
Space thruster research institute, Iranian space research center, ،Tabriz, Iran
چکیده English

In recent years, linear electromagnetic actuators have gained special attention in small robot actuation and calibration of milli newton thruster stands. In this paper, a linear electromagnetic actuator with a force range of milli newtons is designed and manufactured. In this regard, first the analytical relationships of the magnetic field and Lorentz force were derived and then, based on the desired design criteria meaning high force sensitivity, low heat loss and minimum geometric dimensions and weight, the appropriate design parameters of the electromagnetic actuator is obtained. According to the results, the obtained force constant is approximately 1 mN/A while the maximum power loss is 1 mW at available stroke of 10 mm. Finally, a prototype of the linear electromagnetic actuator is manufactured and experiments are performed to validate the electromagnetic actuator. For this purpose, a precision scale with an accuracy of 0.01 gr and a power supply with a resolution of 1 mA is utilized. The results showed that the maximum difference between the calculated and measured force was 2.5%. Therefore, there is a good correlation between the experimental data and the corresponding analytical values.

کلیدواژه‌ها English

Electromagnetic actuator
Analytical modeling
Magnetic Field
milli newton sensitivity
manufacturing
validation
[1]Brauer JR. Magnetic actuators and sensors: John Wiley & Sons; 2006. [DOI:10.1002/0471777714]
[1]Brauer JR. Magnetic actuators and sensors: John Wiley & Sons; 2006. [DOI:10.1002/0471777714]
[2]Shan G, Li Y, Zhang L, Wang Z, Zhang Y, Qian J. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges. Review of Scientific Instruments. 2015;86(10):101501. [DOI:10.1063/1.4932580]
[2]Shan G, Li Y, Zhang L, Wang Z, Zhang Y, Qian J. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges. Review of Scientific Instruments. 2015;86(10):101501. [DOI:10.1063/1.4932580]
[3]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al., editors. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system. ICMIT 2005: Mechatronics, MEMS, and Smart Materials; 2006: International Society for Optics and Photonics. [DOI:10.1117/12.664218]
[3]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al., editors. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system. ICMIT 2005: Mechatronics, MEMS, and Smart Materials; 2006: International Society for Optics and Photonics. [DOI:10.1117/12.664218]
[4]Banik R, Gweon D-G. Design and optimization of voice coil motor for application in active vibration isolation. Sensors and Actuators A: Physical. 2007;137(2):236-43. [DOI:10.1016/j.sna.2007.03.011]
[4]Banik R, Gweon D-G. Design and optimization of voice coil motor for application in active vibration isolation. Sensors and Actuators A: Physical. 2007;137(2):236-43. [DOI:10.1016/j.sna.2007.03.011]
[5]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system: SPIE; 2006. [DOI:10.1117/12.664218]
[5]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system: SPIE; 2006. [DOI:10.1117/12.664218]
[6]Janssen JLG, Paulides JJH, Encica L, Lomonova E, editors. High-performance moving-coil actuators with double-sided PM arrays: A design comparison. 2010 International Conference on Electrical Machines and Systems; 2010 10-13 Oct. 2010.
[6]Janssen JLG, Paulides JJH, Encica L, Lomonova E, editors. High-performance moving-coil actuators with double-sided PM arrays: A design comparison. 2010 International Conference on Electrical Machines and Systems; 2010 10-13 Oct. 2010.
[7]Wang X, Yang BT, Zhu Y. Modeling and analysis of a novel rectangular voice coil motor for the 6-DOF fine stage of lithographic equipment. Optik. 2016;127(4):2246-50. [DOI:10.1016/j.ijleo.2015.11.107]
[7]Wang X, Yang BT, Zhu Y. Modeling and analysis of a novel rectangular voice coil motor for the 6-DOF fine stage of lithographic equipment. Optik. 2016;127(4):2246-50. [DOI:10.1016/j.ijleo.2015.11.107]
[8]Hsieh C-L, Liu C-S, Cheng C-C. Design of a 5 degree of freedom-voice coil motor actuator for smartphone camera modules. Sensors and Actuators A: Physical. 2020;309:112014. [DOI:10.1016/j.sna.2020.112014]
[8]Hsieh C-L, Liu C-S, Cheng C-C. Design of a 5 degree of freedom-voice coil motor actuator for smartphone camera modules. Sensors and Actuators A: Physical. 2020;309:112014. [DOI:10.1016/j.sna.2020.112014]
[9]Kim J-Y, Ahn D. Analysis of High Force Voice Coil Motors for Magnetic Levitation. Actuators. 2020;9(4):133. [DOI:10.3390/act9040133]
[9]Kim J-Y, Ahn D. Analysis of High Force Voice Coil Motors for Magnetic Levitation. Actuators. 2020;9(4):133. [DOI:10.3390/act9040133]
[10]Sabzehmeidani Y, Mailah M, Hing TH, Abdelmaksoud SI. A Novel Voice-Coil Actuated Mini Crawler for In-Pipe Application Employing Active Force Control With Iterative Learning Algorithm. IEEE Access. 2021;9:28156-66. [DOI:10.1109/ACCESS.2021.3058312]
[10]Sabzehmeidani Y, Mailah M, Hing TH, Abdelmaksoud SI. A Novel Voice-Coil Actuated Mini Crawler for In-Pipe Application Employing Active Force Control With Iterative Learning Algorithm. IEEE Access. 2021;9:28156-66. [DOI:10.1109/ACCESS.2021.3058312]
[11]Bijster R. Design, verification and validation of a micropropulsion thrust stand. 2014.
[11]Bijster R. Design, verification and validation of a micropropulsion thrust stand. 2014.
[12]Kokal U. DEVELOPMENT OF A MILI-NEWTON LEVEL THRUST STAND FOR THRUST MEASUREMENTS OF ELECTRIC PROPULSION SYSTEMS AND UK90 HALL EFFECT THRUSTER: Bogaziçi University; 2019.
[12]Kokal U. DEVELOPMENT OF A MILI-NEWTON LEVEL THRUST STAND FOR THRUST MEASUREMENTS OF ELECTRIC PROPULSION SYSTEMS AND UK90 HALL EFFECT THRUSTER: Bogaziçi University; 2019.
[13]Kolbeck J, Porter TE, Keidar M, editors. High precision thrust balance development at the george washington. Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA; 2017.
[13]Kolbeck J, Porter TE, Keidar M, editors. High precision thrust balance development at the george washington. Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA; 2017.
[14]Furlani EP. Permanent magnet and electromechanical devices: materials, analysis, and applications: Academic press; 2001. [DOI:10.1016/B978-012269951-1/50005-X]
[14]Furlani EP. Permanent magnet and electromechanical devices: materials, analysis, and applications: Academic press; 2001. [DOI:10.1016/B978-012269951-1/50005-X]
[15]Compter J, Lomonova E, Makarovic J. Direct 3-D method for performance prediction of a linear moving coil actuator with various topologies. IEE Proceedings-Science, Measurement and Technology. 2003;150(4):183-91. [DOI:10.1049/ip-smt:20030586]
[15]Compter J, Lomonova E, Makarovic J. Direct 3-D method for performance prediction of a linear moving coil actuator with various topologies. IEE Proceedings-Science, Measurement and Technology. 2003;150(4):183-91. [DOI:10.1049/ip-smt:20030586]
[16]Jansen J, Janssen J, Rovers J, Paulides J, Lomonova E. (Semi-) analytical models for the design of high-precision permanent magnet actuators. International Compumag Society Newsletter. 2009;16(2):4-17.
[16]Jansen J, Janssen J, Rovers J, Paulides J, Lomonova E. (Semi-) analytical models for the design of high-precision permanent magnet actuators. International Compumag Society Newsletter. 2009;16(2):4-17.
[17]Gieras JF. Permanent magnet motor technology: design and applications: CRC press; 2009. [DOI:10.1201/9781420064414]
[17]Gieras JF. Permanent magnet motor technology: design and applications: CRC press; 2009. [DOI:10.1201/9781420064414]
[18]Akoun G, Yonnet JP. 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Transactions on Magnetics. 1984;20(5):1962-4. [DOI:10.1109/TMAG.1984.1063554]
[18]Akoun G, Yonnet JP. 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Transactions on Magnetics. 1984;20(5):1962-4. [DOI:10.1109/TMAG.1984.1063554]
[19]Jansen JW, Lierop CMMv, Lomonova EA, Vandenput AJA. Modeling of Magnetically Levitated Planar Actuators With Moving Magnets. IEEE Transactions on Magnetics. 2007;43(1):15-25. [DOI:10.1109/TMAG.2006.886051]
[19]Jansen JW, Lierop CMMv, Lomonova EA, Vandenput AJA. Modeling of Magnetically Levitated Planar Actuators With Moving Magnets. IEEE Transactions on Magnetics. 2007;43(1):15-25. [DOI:10.1109/TMAG.2006.886051]
[20]Tang H, Shi C, Zhang Xa, Zhang Z, Cheng J. Pulsed thrust measurements using electromagnetic calibration techniques. Review of Scientific Instruments. 2011;82(3):035118. [DOI:10.1063/1.3567803]
[20]Tang H, Shi C, Zhang Xa, Zhang Z, Cheng J. Pulsed thrust measurements using electromagnetic calibration techniques. Review of Scientific Instruments. 2011;82(3):035118. [DOI:10.1063/1.3567803]
[21]Selden NP, Ketsdever AD. Comparison of force balance calibration techniques for the nano-Newton range. Review of Scientific Instruments. 2003;74(12):5249-54 [DOI:10.1063/1.1623628]
[21]Selden NP, Ketsdever AD. Comparison of force balance calibration techniques for the nano-Newton range. Review of Scientific Instruments. 2003;74(12):5249-54 [DOI:10.1063/1.1623628]