"1- Del Prete A, Primo T, Franchi R. Super-nickel orthogonal turning operations optimization. Procedia CIRP. 2013;8:164-9.
2- Imbrogno S, Rinaldi S, Umbrello D, Filice L, Franchi R, Del Prete A. A physically based constitutive model for predicting the surface integrity in machining of Waspaloy. Materials & Design. 2018;152:140-55.
3- del Prete A, de Vitis AA, Filice L, Caruso S, Umbrello D, editors. Tool engage investigation in nickel superalloy turning operations. Key Engineering Materials; 2012: Trans Tech Publ.
4- Kishawy H, Becze C, McIntosh D. Tool performance and attainable surface quality during the machining of aerospace alloys using self-propelled rotary tools. Journal of materials processing technology. 2004;152(3):266-71.
5- Olovsjö S, Nyborg L. Influence of microstructure on wear behaviour of uncoated WC tools in turning of Alloy 718 and Waspaloy. Wear. 2012;282:12-21.
6- Schaffer JP, Saxena A, Antolovich SD, Sanders TH, Warner SB. The science and design of engineering materials: Irwin Chicago; 1995.
7- Ding H, Shin YC. Improvement of machinability of Waspaloy via laser-assisted machining. The International Journal of Advanced Manufacturing Technology. 2013;64(1-4):475-86.
8- Karaguzel U, Olgun U, Uysal E, Budak E, Bakkal M. Increasing tool life in machining of difficult-to-cut materials using nonconventional turning processes. The International Journal of Advanced Manufacturing Technology. 2015;77(9-12):1993-2004.
9- Umbrello D, editor The effects of cutting conditions on surface integrity in machining Waspaloy. Key Engineering Materials; 2014: Trans Tech Publ.
10- Isik Y. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy. Advances in Mechanical Engineering. 2016;8(5):1687814016647888.
11- Caruso S, Rinaldi S, Franchi R, Del Prete A, Umbrello D, editors. Experimental analysis of influence of cutting conditions on machinability of waspaloy. AIP Conference Proceedings; 2017: AIP Publishing.
12- Rinaldi S, Caruso S, Umbrello D, Filice L, Franchi R, Del Prete A. Machinability of Waspaloy under different cutting and lubri-cooling conditions. The International Journal of Advanced Manufacturing Technology. 2018;94(9-12):3703-12.
13- Przestacki D, Chwalczuk T, editors. The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web of Conferences; 2017: EDP Sciences.
14- Velmurugan KV, Venkatesan K, Devendiran S, Mathew AT. Investigation of Parameters for Machining a Difficult-to-Machine Superalloy: Inconel X-750 and Waspaloy. Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018): Springer; 2019. p. 199-215.
15- International S. SAE International, Aerospace Material Specification AMS 5708L, 2015. 2015.
16- Herrmann K. Hardness testing: principles and applications: ASM international; 2011.
17- Ezugwu E, Wang Z, Machado A. The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology. 1999;86(1-3):1-16.
18- [Available from: Document Prepared by Special Metals on Waspaloy Accessed from http://www.specialmetals.com/documents/Waspaly.
19- Polvorosa R, Suárez A, de Lacalle LL, Cerrillo I, Wretland A, Veiga F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes. 2017;26:44-56.
20- Davies M, Cooke A, Larsen E. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP annals. 2005;54(1):63-6."