"1- Klocke F, Döbbeler B, Peng B, Schneider SAM. Tool-based inverse determination of material model of Direct aged Alloy 718 for FEM cutting simulation. Procedia CIRP [Internet]. 2018;77(Hpc):54–7..
2- Ozel T, Llanos I, Soriano J, Arrazola PJ. 3d finite element modelling of chip formation process for machining inconel 718: Comparison of FE software predictions. Mach Sci Technol. 2011;15(1):21–46.
3- Johnson GR, Cook WH. A Computational Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Pressures. Seventh Int Symp Ballist. 1983;541–7.
4- Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf. 2008;48(3–4):275–88.
5- Sima M, Özel T. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf. 2010;50(11):943–60.
6- Pawade RS, Joshi SS. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int J Adv Manuf Technol. 2011;56(1–4):47–62.
7- Razanica S, Malakizadi A, Larsson R, Cedergren S, Josefson BL. FE modeling and simulation of machining Alloy 718 based on ductile continuum damage. Int J Mech Sci. 2020;171.
8- Ye GG, Chen Y, Xue SF, Dai LH. Critical cutting speed for onset of serrated chip flow in high speed machining. Int J Mach Tools Manuf. 2014;86:18–33.
9- Lorentzon J, Järvstråt N, Josefson BL. Modelling chip formation of alloy 718. J Mater Process Technol. 2009;209(10):4645–53.
10- Parida AK, Maity K. Numerical and experimental analysis of specific cutting energy in hot turning of Inconel 718. Meas J Int Meas Confed [Internet]. 2019;133(October):361–9.
11- Wang B, Liu Z, Hou X, Zhao J. Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of inconel 718. Materials (Basel). 2018;11(4).
12- Ebrahimi SM, Araee A, Hadad M. Investigation of the effects of constitutive law on numerical analysis of turning processes to predict the chip morphology, tool temperature, and cutting force. Int J Adv Manuf Technol. 2019;105(10):4245–64.
13- Qiu X, Cheng X, Dong P, Peng H, Xing Y, Zhou X. Sensitivity analysis of johnson-cook material constants and friction coeffcient influence on finite element simulation of turning inconel 718. Materials (Basel). 2019;12(19).
14- Ahmed N, Mitrofanov A V., Babitsky VI, Silberschmidt V V. Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater Sci Eng A. 2006;424(1–2):318–25.
15- Brown WF, Mindlin H, Ho CY. Aerospace structural metals handbook. CINDAS/USAF CRDA Handbooks Operations, Perdue University; 1996.
16- Iturbe A, Giraud E, Hormaetxe E, Garay A, Germain G, Ostolaza K, et al. Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment. Mater Sci Eng A [Internet]. 2017;682:441–53. Available from:
17- ThirdWaveSystems. Third Wave AdvantEdgeTM User’s Manual Version 7.0. 2015;378.
"