"1- Hillery, M.T. and Shuaib, I. 1999. Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology, 92: 302-308.
2- Bachus, K.N., Rondina, M.T. and Hutchinson, D.T. 2000. The effects of drilling force on cortical temperatures and their duration: an in vitro study. Medical engineering & physics, 22(10): 685-691.
3- Augustin, G., Davila, S., Udiljak, T., Vedrina, D.S. and Bagatin, D. 2009. Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report. Archives of Orthopaedic and Trauma Surgery, 129(5): 703-709.
4- Shakouri, E., Sadeghi, M.H., Maerefat, M., Karafi, M.R. and Memarpour, M. 2014. Experimental and analytical investigation of thrust force in ultrasonic assisted drilling of bone. Modares Mechanical Engineering, 14(6): 194-200. (In Persian)
5- Shakouri, E., Haghighi Hassanali Deh, H. and Gholampour, S. 2017. Experimental evaluating and statistical modeling of temperature elevation in bone drilling with internal cooling with gas. Modares Mechanical Engineering, 17(3): 47-54. (In Persian)
6- Udiljak, T., Ciglar, D. and Skoric, S. 2007. Investigation into bone drilling and thermal bone necrosis. Advances in Production Engineering & Management, 2(3): 103-112.
7- Davidson, S.R. and James, D.F. 2003. Drilling in bone: modeling heat generation and temperature distribution. J. Biomech. Eng., 125(3): 305-314.
8- Gholampour, S., Shakouri, E. and Deh, H.H.H. 2018. Effect of drilling direction and depth on thermal necrosis during tibia drilling: an in vitro study. Technology and Health Care(Preprint): 1-11.
9- Mediouni, M., Schlatterer, D.R., Khoury, A., Von Bergen, T., Shetty, S.H., Arora, M., Dhond, A., Vaughan, N. and Volosnikov, A. 2017. Optimal parameters to avoid thermal necrosis during bone drilling: a finite element analysis. Journal of Orthopaedic Research, 35(11): 2386-2391
10- Santiuste, C., Rodríguez-Millán, M., Giner, E. and Miguélez, H. 2014. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Composite Structures, 116: 423-431.
11- Feldmann, A.N., Wili, P., Maquer, G.B. and Zysset, P. 2018. The thermal conductivity of cortical and cancellous bone. European cells & materials eCM, 35: 25-33
12- M. Maerefat, A.Omidvar, Thermal Comfort, pp. 15-21, Tehran: Kelid Amoozesh, 2008. (In Persian)
13- Moulgada, A., Zagane, M., Benouis, A., Sahli, A., Cherfi, M. and Benbarek, S. 2018. Modelling of the Femoral Fracture Under Dynamic Loading. Journal of the Serbian Society for Computational Mechanics/Vol, 12(1): 96-107.
14- Shakouri, E. and Maerefat, M. 2017. Theoretical and Experimental Investigation of Heat Generation in Bone Drilling: Determination of the Share of Heat Input to the Bone Using Machining Theory and Inverse Conduction Heat Transfer. Modares Mechanical Engineering, 17(7): 131-140. (In Persian)
15- Johnson, G.R. 1983. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proc. 7th Inf. Sympo. Ballistics: 541-547.
16- Hou, Y., Li, C., Ma, H., Zhang, Y., Yang, M. and Zhang, X. 2015. An experimental research on bone drilling temperature in orthopaedic surgery. The Open Materials Science Journal, 9(1).
17- Alam, K., Khan, M. and Silberschmidt, V.V. 2014. 3D finite-element modelling of drilling cortical bone: Temperature analysis. J Med Biol Eng, 34(6): 618-623.
18- Stumme, L.D., Baldini, T.H., Jonassen, E.A. and Bach, J.M. 2003. Emissivity of bone. Paper presented at the Summer bioengineering conference."