مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

اثر مسیر کرنش و پیری طبیعی بر ریزساختار و سختی آلیاژ آلومینیم AA7075

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی نوشیروانی بابل
چکیده
در تحقیق حاضر اثر مسیر کرنش توسط دو فرایند نورد نامتقارن مستقیم و نورد نامتقارن متقاطع و نیز پیری طبیعی روی ریزساختار و سختی آلیاژ آلومینیم AA7075 مورد بررسی قرار گرفت. ریزساختار توسط میکروسکوپ نوری و سختی توسط دستگاه سختی سنجی ماکرو ویکرز بررسی شد. نتایج نشان داد که نمونه‌ی عملیات محلولی شده (نمونه اولیه) دارای دانه‌های کشیده شده ناشی از نورد و میانگین عرض دانه‌ها در این نمونه برابر با 4/13 میکرومتر بوده است. با اعمال نورد نامتقارن مستقیم تا 60%، دانه‌ها کشیده‌تر شدند و میانگین عرض دانه‌ها به 6/2 میکرومتر رسید. با اعمال نورد نامتقارن متقاطع تا 40%، میانگین عرض دانه‌ها به 7/3 میکرومتر رسید. توزیع ذرات با اعمال نورد تغییر محسوسی نداشت. باندهای برشی نیز بعد از 40% و 60% نورد مستقیم، و نیز پس از 40% نورد متقاطع در ماده تشکیل شدند. در زمان پیری صفر، سختی نمونه‌ی 60% نورد مستقیم از نمونه‌ی 40% نورد متقاطع بیشتر بود. با افزایش زمان پیرسازی، سختی تمامی نمونه‌ها در اثر پیری طبیعی افزایش یافت. هر چه درصد کاهش ضخامت بیشتر شد (افزایش کرنش)، درصد افزایش سختی ناشی از پیری طبیعی کاهش پیدا کرد. افزایش سختی ناشی از پیری طبیعی در فرایند نورد متقاطع محسوس‌تر از فرایند نورد مستقیم بود. بعد از گذشت 7 روز پیری طبیعی، سختی ماده به حد اشباع خود رسید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of strain path and natural aging on the microstructure and hardness of AA7075 aluminum alloy

نویسندگان English

Amir Kazemi-Navaee
Roohollah Jamaati
Hamed Jamshidi Aval
Babol Noshirvani University of Technology
چکیده English

In the current research, the effect of strain path by two processes of conventional asymmetric rolling and asymmetric cross rolling, as well as natural aging on the microstructure and hardness of AA7075 aluminum alloy was investigated. The microstructure was examined by light microscopy and the hardness by macro-Vickers hardness tester. The results showed that the rolled sample (initial sample) had elongated grains due to rolling and the average width of the grains in this sample was 13.4 μm. By applying conventional asymmetric rolling up to 60%, the grains became more elongated and the average grain width reached 2.6 μm. By performing asymmetric cross rolling up to 40%, the average grain width reached 3.7 μm. The distribution of particles did not change significantly with rolling deformation. Shear bands were also formed in the sample after 40% and 60% conventional asymmetric rolling, as well as after 40% asymmetric cross rolling. At zero aging time, the hardness of the 60% conventionally rolled sample was higher than the 40% cross rolled sample. With increasing the aging time, the hardness of all samples increased due to natural aging. As the thickness reduction percentage increased (increasing the strain), the hardness increase percentage due to natural aging decreased. The increase in hardness due to natural aging was more noticeable in the cross-rolling process than in the conventional rolling process. After 7 days of natural aging, the hardness of the material reached its saturation limit.

کلیدواژه‌ها English

AA7075 aluminum alloy
Asymmetric rolling
Strain path
Natural aging
Microstructure
Hardness
[1] C.A. Harper, Handbook of materials for product design, McGraw-Hill Professional Publishing2001.
[1] C.A. Harper, Handbook of materials for product design, McGraw-Hill Professional Publishing2001.
[2] J.R. Davis, Alloying: understanding the basics, ASM international, 2001. [DOI:10.31399/asm.tb.aub.9781627082976]
[2] J.R. Davis, Alloying: understanding the basics, ASM international, 2001. [DOI:10.31399/asm.tb.aub.9781627082976]
[3] W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Fine-grained AA 7075 processed by different thermo-mechanical processings, Materials Science and Engineering: A 618 (2014) 244-253. [DOI:10.1016/j.msea.2014.09.026]
[3] W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Fine-grained AA 7075 processed by different thermo-mechanical processings, Materials Science and Engineering: A 618 (2014) 244-253. [DOI:10.1016/j.msea.2014.09.026]
[4] D.C.C. Magalhães, M.F. Hupalo, O.M. Cintho, Natural aging behavior of AA7050 Al alloy after cryogenic rolling, Materials Science and Engineering: A 593 (2014) 1-7. [DOI:10.1016/j.msea.2013.11.017]
[4] D.C.C. Magalhães, M.F. Hupalo, O.M. Cintho, Natural aging behavior of AA7050 Al alloy after cryogenic rolling, Materials Science and Engineering: A 593 (2014) 1-7. [DOI:10.1016/j.msea.2013.11.017]
[5] V. Glebovsky, Progress in Metallic Alloys, BoD-Books on Demand, 2016. [DOI:10.5772/61725]
[5] V. Glebovsky, Progress in Metallic Alloys, BoD-Books on Demand, 2016. [DOI:10.5772/61725]
[6] K. Hamad, Y.G. Ko, Continuous differential speed rolling for grain refinement of metals: processing, microstructure, and properties, Critical Reviews in Solid State and Materials Sciences 44(6) (2019) 470-525. [DOI:10.1080/10408436.2018.1525528]
[6] K. Hamad, Y.G. Ko, Continuous differential speed rolling for grain refinement of metals: processing, microstructure, and properties, Critical Reviews in Solid State and Materials Sciences 44(6) (2019) 470-525. [DOI:10.1080/10408436.2018.1525528]
[7] P. Fajfar, A.Š. Lah, J. Kraner, G. Kugler, Asymmetric rolling process, Materials and Geoenvironment 64(3) (2017) 151-160. [DOI:10.1515/rmzmag-2017-0014]
[7] P. Fajfar, A.Š. Lah, J. Kraner, G. Kugler, Asymmetric rolling process, Materials and Geoenvironment 64(3) (2017) 151-160. [DOI:10.1515/rmzmag-2017-0014]
[8] S. Hashmi, Comprehensive materials processing, Newnes, 2014.
[8] S. Hashmi, Comprehensive materials processing, Newnes, 2014.
[9] M. Rout, S.K. Pal, S.B. Singh, Cross rolling: a metal forming process, Modern Manufacturing Engineering, Springer2015, pp. 41-64. [DOI:10.1007/978-3-319-20152-8_2]
[9] M. Rout, S.K. Pal, S.B. Singh, Cross rolling: a metal forming process, Modern Manufacturing Engineering, Springer2015, pp. 41-64. [DOI:10.1007/978-3-319-20152-8_2]
[10] N. Nayan, S. Mishra, A. Prakash, S. Murty, M. Prasad, I. Samajdar, Effect of cross-rolling on microstructure and texture evolution and tensile behavior of aluminium-copper-lithium (AA2195) alloy, Materials Science and Engineering: A 740 (2019) 252-261. [DOI:10.1016/j.msea.2018.10.089]
[10] N. Nayan, S. Mishra, A. Prakash, S. Murty, M. Prasad, I. Samajdar, Effect of cross-rolling on microstructure and texture evolution and tensile behavior of aluminium-copper-lithium (AA2195) alloy, Materials Science and Engineering: A 740 (2019) 252-261. [DOI:10.1016/j.msea.2018.10.089]
[11] D.C.C. Magalhães, A.M. Kliauga, M. Ferrante, V.L. Sordi, Asymmetric cryorolling of AA6061 Al alloy: Strain distribution, texture and age hardening behavior, Materials Science and Engineering: A 736 (2018) 53-60. [DOI:10.1016/j.msea.2018.08.075]
[11] D.C.C. Magalhães, A.M. Kliauga, M. Ferrante, V.L. Sordi, Asymmetric cryorolling of AA6061 Al alloy: Strain distribution, texture and age hardening behavior, Materials Science and Engineering: A 736 (2018) 53-60. [DOI:10.1016/j.msea.2018.08.075]
[12] M. Moghaddam, A. Zarei-Hanzaki, M. Pishbin, A. Shafieizad, V. Oliveira, Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Materials Characterization 119 (2016) 137-147. [DOI:10.1016/j.matchar.2016.07.026]
[12] M. Moghaddam, A. Zarei-Hanzaki, M. Pishbin, A. Shafieizad, V. Oliveira, Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Materials Characterization 119 (2016) 137-147. [DOI:10.1016/j.matchar.2016.07.026]
[13] Y. Yang, H. Zheng, Z. Shi, Q. Zhang, Effect of orientation on self-organization of shear bands in 7075 aluminum alloy, Materials Science and Engineering: A 528(6) (2011) 2446-2453. [DOI:10.1016/j.msea.2010.12.050]
[13] Y. Yang, H. Zheng, Z. Shi, Q. Zhang, Effect of orientation on self-organization of shear bands in 7075 aluminum alloy, Materials Science and Engineering: A 528(6) (2011) 2446-2453. [DOI:10.1016/j.msea.2010.12.050]
[14] H. Li, P. Chen, Z. Wang, F. Zhu, R. Song, Z. Zheng, Tensile properties, microstructures and fracture behaviors of an Al-Zn-Mg-Cu alloy during ageing after solution treating and cold-rolling, Materials Science and Engineering: A 742 (2019) 798-812. [DOI:10.1016/j.msea.2018.03.098]
[14] H. Li, P. Chen, Z. Wang, F. Zhu, R. Song, Z. Zheng, Tensile properties, microstructures and fracture behaviors of an Al-Zn-Mg-Cu alloy during ageing after solution treating and cold-rolling, Materials Science and Engineering: A 742 (2019) 798-812. [DOI:10.1016/j.msea.2018.03.098]