[1] Raghulnath D, Saravanan K, Lakshmanan P, Ranjith Kuma M, Hariharan K. B. Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator, Materialstoday proceedings. 2021;37(2):3721-24. [
DOI:10.1016/j.matpr.2020.10.189]
[1] Raghulnath D, Saravanan K, Lakshmanan P, Ranjith Kuma M, Hariharan K. B. Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator, Materialstoday proceedings. 2021;37(2):3721-24. [
DOI:10.1016/j.matpr.2020.10.189]
[2] Kır D, Ertürk H. Convective heat transfer and pressure drop characteristics of grapheme water nanofluids in transitional flow. International Communications in Heat and Mass Transfer. 2021;121:105092. [
DOI:10.1016/j.icheatmasstransfer.2020.105092]
[2] Kır D, Ertürk H. Convective heat transfer and pressure drop characteristics of grapheme water nanofluids in transitional flow. International Communications in Heat and Mass Transfer. 2021;121:105092. [
DOI:10.1016/j.icheatmasstransfer.2020.105092]
[3] Marzouk S. A, Abou Al-Sood M. M, Fakharany M. K, El-Said E. M. S. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: Experimental study. International Journal of Thermal Sciences. 2021;161:106742. [
DOI:10.1016/j.ijthermalsci.2020.106742]
[3] Marzouk S. A, Abou Al-Sood M. M, Fakharany M. K, El-Said E. M. S. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: Experimental study. International Journal of Thermal Sciences. 2021;161:106742. [
DOI:10.1016/j.ijthermalsci.2020.106742]
[4] Feng S, Cheng X, Bi Q, Pan H, Liu Z. Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts. International Journal of Heat and Mass Transfer. 2020;146:118817. [
DOI:10.1016/j.ijheatmasstransfer.2019.118817]
[4] Feng S, Cheng X, Bi Q, Pan H, Liu Z. Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts. International Journal of Heat and Mass Transfer. 2020;146:118817. [
DOI:10.1016/j.ijheatmasstransfer.2019.118817]
[5] Khanjani S, Tavakoli A, Jalali Vahid D, Nazari M, Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger, Modares Mechanical Engineering, 2015;15(11):181-90.[Persian]
[5] Khanjani S, Tavakoli A, Jalali Vahid D, Nazari M, Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger, Modares Mechanical Engineering, 2015;15(11):181-90.[Persian]
[6] Andrzejczy R, Muszynski T, Kozak P. Experimental investigation of heat transfer enhancement in straight and Ubend double-pipe heat exchanger with wire insert. Chemical Engineering & Processing: Process Intensification. 2019;136:177-90. [
DOI:10.1016/j.cep.2019.01.003]
[6] Andrzejczy R, Muszynski T, Kozak P. Experimental investigation of heat transfer enhancement in straight and Ubend double-pipe heat exchanger with wire insert. Chemical Engineering & Processing: Process Intensification. 2019;136:177-90. [
DOI:10.1016/j.cep.2019.01.003]
[7] Syam Sundar L, Bhramara P, Ravi Kumar N. T, Singh M. K, Sousa A. C. M. Experimental heat transfer, friction factor and effectiveness analysis of 〖Fe〗_3 O_4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer. 2017;109:440-53. [
DOI:10.1016/j.ijheatmasstransfer.2017.02.022]
[7] Syam Sundar L, Bhramara P, Ravi Kumar N. T, Singh M. K, Sousa A. C. M. Experimental heat transfer, friction factor and effectiveness analysis of 〖Fe〗_3 O_4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer. 2017;109:440-53. [
DOI:10.1016/j.ijheatmasstransfer.2017.02.022]
[8] Nazari M, Jalali Vahid D, Khanjani S. Experimental investigation of force convection heat transfer in porous channel with internal heat generation, Modares Mechanical Engineering. 2014;15(1):203-10.[Persian]
[8] Nazari M, Jalali Vahid D, Khanjani S. Experimental investigation of force convection heat transfer in porous channel with internal heat generation, Modares Mechanical Engineering. 2014;15(1):203-10.[Persian]
[9] Sarafraz M. M, Hormozi F, Nikkhah V, Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Experimental Thermal and Fluid Science. 2016;78:41-49. [
DOI:10.1016/j.expthermflusci.2016.05.014]
[9] Sarafraz M. M, Hormozi F, Nikkhah V, Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Experimental Thermal and Fluid Science. 2016;78:41-49. [
DOI:10.1016/j.expthermflusci.2016.05.014]
[10] Esfe M. H, Saedodin S, Turbulent forced convection heat transfer and thermophysical properties of Mgo-water nanofluid with consideration of different nanoparticles diameter, an empirical study. Journal of Thermal Analysis and Calorimetry. 2015;119(2):1205-13. [
DOI:10.1007/s10973-014-4197-1]
[10] Esfe M. H, Saedodin S, Turbulent forced convection heat transfer and thermophysical properties of Mgo-water nanofluid with consideration of different nanoparticles diameter, an empirical study. Journal of Thermal Analysis and Calorimetry. 2015;119(2):1205-13. [
DOI:10.1007/s10973-014-4197-1]
[11] Bozorgan N, Panahizadeh F, Bozorgan N, Investigating the using of Al2O3/EG nanofluids as coolants in a double-tube heat exchanger. Modares Mechanical Engineering. 2011;11(3):75-84.[Persian]
[11] Bozorgan N, Panahizadeh F, Bozorgan N, Investigating the using of Al2O3/EG nanofluids as coolants in a double-tube heat exchanger. Modares Mechanical Engineering. 2011;11(3):75-84.[Persian]
[12] Sarafraz M. M, Hormozi F, Intensification of forced convective heat transfer using biological nanofluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science. 2015;66:279-89. [
DOI:10.1016/j.expthermflusci.2015.03.028]
[12] Sarafraz M. M, Hormozi F, Intensification of forced convective heat transfer using biological nanofluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science. 2015;66:279-89. [
DOI:10.1016/j.expthermflusci.2015.03.028]
[13] Khedkar R. S, Sonawane S. S, Wasewar K. L, Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering.2013;51:318-23. [
DOI:10.1016/j.proeng.2013.01.043]
[13] Khedkar R. S, Sonawane S. S, Wasewar K. L, Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering.2013;51:318-23. [
DOI:10.1016/j.proeng.2013.01.043]
[14] Sonawane S. S, Khedkar R. S, Wasewar K. L, Study on concentric tube heat exchanger heat transfer performance using Al2O3 - water based nanofluids. International Communications in Heat and Mass Transfer. 2013;49:60-8. [
DOI:10.1016/j.icheatmasstransfer.2013.10.001]
[14] Sonawane S. S, Khedkar R. S, Wasewar K. L, Study on concentric tube heat exchanger heat transfer performance using Al2O3 - water based nanofluids. International Communications in Heat and Mass Transfer. 2013;49:60-8. [
DOI:10.1016/j.icheatmasstransfer.2013.10.001]
[15] Khan M. S, Mei S, Shabnam, Shah N. A, Chung J. D, Khan A, Shah S. A. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Nanomaterials. 2022;12(4):660. [
DOI:10.3390/nano12040660]
[15] Khan M. S, Mei S, Shabnam, Shah N. A, Chung J. D, Khan A, Shah S. A. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Nanomaterials. 2022;12(4):660. [
DOI:10.3390/nano12040660]
[16] Omiddezyani S, Khazaee I, Gharehkhani S, Ashjaee M, Shemirani F, Zandian V. Experimental Investigation of Convective Heat Transfer of Ferro-Nanofluid Containing Graphene in a Circular Tube under Magnetic Field. Modares Mechanical Engineering. 2019;19(8):1929-41.[Persian]
[16] Omiddezyani S, Khazaee I, Gharehkhani S, Ashjaee M, Shemirani F, Zandian V. Experimental Investigation of Convective Heat Transfer of Ferro-Nanofluid Containing Graphene in a Circular Tube under Magnetic Field. Modares Mechanical Engineering. 2019;19(8):1929-41.[Persian]
[17] Sheikhzadeh Gh. A, Nazififard M, Maddahian R, Kazemi Kh. Numerical Simulation of Nanofluid Heat Transfer in a Tube Equipped with Twisted Tape Using the Eulerian-Lagrangian Two-Phase Model. Modares Mechanical Engineering. 2019;19(1):53-62.[Persian]
[17] Sheikhzadeh Gh. A, Nazififard M, Maddahian R, Kazemi Kh. Numerical Simulation of Nanofluid Heat Transfer in a Tube Equipped with Twisted Tape Using the Eulerian-Lagrangian Two-Phase Model. Modares Mechanical Engineering. 2019;19(1):53-62.[Persian]
[18] Li X. F, Zhu D. S, Wang X. J, Wang N, Gao J. W, Li H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta. 2008;469:98-103. [
DOI:10.1016/j.tca.2008.01.008]
[18] Li X. F, Zhu D. S, Wang X. J, Wang N, Gao J. W, Li H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta. 2008;469:98-103. [
DOI:10.1016/j.tca.2008.01.008]
[19]Sundar L. S, Singh M. K, Sousa A. C. M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7-14. [
DOI:10.1016/j.icheatmasstransfer.2013.02.014]
[19]Sundar L. S, Singh M. K, Sousa A. C. M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7-14. [
DOI:10.1016/j.icheatmasstransfer.2013.02.014]
[20] Nazari M, Ashouri M, Kayhani M. H, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal Sciences. 2015;88:33-9. [
DOI:10.1016/j.ijthermalsci.2014.08.013]
[20] Nazari M, Ashouri M, Kayhani M. H, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal Sciences. 2015;88:33-9. [
DOI:10.1016/j.ijthermalsci.2014.08.013]
[21] Rafati R, Hamidi A. A, Shariati Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering. 2012 March;45-46:9-14. [
DOI:10.1016/j.applthermaleng.2012.03.028]
[21] Rafati R, Hamidi A. A, Shariati Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering. 2012 March;45-46:9-14. [
DOI:10.1016/j.applthermaleng.2012.03.028]
[22] Azaria A, Derakhshandehb M. A nexperimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. Journal of the Taiwan Institute of Chemical Engineers. 2015;52:31-9. [
DOI:10.1016/j.jtice.2015.02.009]
[22] Azaria A, Derakhshandehb M. A nexperimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. Journal of the Taiwan Institute of Chemical Engineers. 2015;52:31-9. [
DOI:10.1016/j.jtice.2015.02.009]
[23] Syam Sundar L, Ravi Kumar N. T, Mulat Addis B, Bhramara P, Singh M. K, Sousa A. C. M. Heat transfer and effectiveness experimentally-based analysis of wire coil with core-rod inserted in Fe3O4/water nanofluid flow in a double pipe U-bend heat exchanger. International Journal of Heat and Mass Transfer. 2019 January;134:405-419. [
DOI:10.1016/j.ijheatmasstransfer.2019.01.041]
[23] Syam Sundar L, Ravi Kumar N. T, Mulat Addis B, Bhramara P, Singh M. K, Sousa A. C. M. Heat transfer and effectiveness experimentally-based analysis of wire coil with core-rod inserted in Fe3O4/water nanofluid flow in a double pipe U-bend heat exchanger. International Journal of Heat and Mass Transfer. 2019 January;134:405-419. [
DOI:10.1016/j.ijheatmasstransfer.2019.01.041]
[24]Kayhani M. H, Soltanzadeh H, Heyhat M. M, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer. 2012 January;39:456-62. [
DOI:10.1016/j.icheatmasstransfer.2012.01.004]
[24]Kayhani M. H, Soltanzadeh H, Heyhat M. M, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer. 2012 January;39:456-62. [
DOI:10.1016/j.icheatmasstransfer.2012.01.004]
[25] Rohit S. K, Shriram S. S, Kailas L.W, Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid. International Communications in Heat and Mass Transfer. 2014 October;57:163-9. [
DOI:10.1016/j.icheatmasstransfer.2014.07.011]
[25] Rohit S. K, Shriram S. S, Kailas L.W, Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid. International Communications in Heat and Mass Transfer. 2014 October;57:163-9. [
DOI:10.1016/j.icheatmasstransfer.2014.07.011]
[26] Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer. 2003;125:151-55. [
DOI:10.1115/1.1532008]
[26] Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer. 2003;125:151-55. [
DOI:10.1115/1.1532008]
[27] Sneha P, Subrahmanyam T, Naidu S.V. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. International Journal of Thermal Sciences. 2019;136:530-8. [
DOI:10.1016/j.ijthermalsci.2018.11.008]
[27] Sneha P, Subrahmanyam T, Naidu S.V. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. International Journal of Thermal Sciences. 2019;136:530-8. [
DOI:10.1016/j.ijthermalsci.2018.11.008]
[28] Webb R.L, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer. 1981;24:715-26. [
DOI:10.1016/0017-9310(81)90015-6]
[28] Webb R.L, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer. 1981;24:715-26. [
DOI:10.1016/0017-9310(81)90015-6]
[29] Chandrasekar M, Suresh S. Experiments to Explore the Mechanisms of Heat Transfer in Nanocrystalline Alumina/Water Nanofluid under Laminar and Turbulent Flow Conditions. Experimental Heat Transfer. 2011;24(3):234-56. [
DOI:10.1080/08916152.2010.523809]
[29] Chandrasekar M, Suresh S. Experiments to Explore the Mechanisms of Heat Transfer in Nanocrystalline Alumina/Water Nanofluid under Laminar and Turbulent Flow Conditions. Experimental Heat Transfer. 2011;24(3):234-56. [
DOI:10.1080/08916152.2010.523809]
[30] Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer. 2009;52(13-14):3187-96. [
DOI:10.1016/j.ijheatmasstransfer.2009.02.006]
[30] Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer. 2009;52(13-14):3187-96. [
DOI:10.1016/j.ijheatmasstransfer.2009.02.006]