مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی تاثیر استفاده از نانوسیال اکسید آهن (Fe3O4) و تزریق جریان ثانویه بر عملکرد حرارتی در یک لوله افقی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگد مهندسی مکانیک دانشگاه صنعتی ارومیه
2 دانشکده مهندسی مکانیک دانشگاه صنعتی ارومیه
چکیده
در این مقاله تاثیر استفاده از نانوسیال اکسید آهن ( ) با سه غلظت حجمی 0/01%، 0/03% و 0/06%، و تزریق جریان ثانویه بر مقدار انتقال حرارت جابجایی و ضریب اصطکاک در یک لوله افقی بصورت تجربی بررسی شده است. جریان ثانویه بمنظور ایجاد آشفتگی بیشتر به پنج مدل مختلف به جریان اصلی در محدوده رینولدز 5865 تا 18800 تزریق شده است. طول و قطر لوله آزمایش به ترتیب 65 Le= و 1/7 D= سانتی‌متر، قطر سوراخ‌های تزریق جریان ثانویه 4/5 و 3 d= میلی‌متر، نسبت دبی حجمی جریان ثانویه به جریان کلی 20% و 10% و فاصله بین سوراخ‌های تزریق جریان ثانویه 4 و 2 = در نظر گرفته شده است. نتایج نشان می‌دهند که افزایش قطر سوراخ‌های تزریق جریان ثانویه، نسبت دبی حجمی جریان ثانویه به جریان کلی و کاهش فاصله بین سوراخ‌های تزریق جریان ثانویه در افزایش ضریب بهره موثر می‌باشند. با استفاده از سیال آب، بالاترین ضریب‌ بهره در حالت4/5d= میلی‌متر، 20% و 2 در هر مدل بدست آمد. در این حالت میانگین ضریب بهره در کلیه‌ رینولدزها برای مدل اول تا پنجم به ترتیب 1/256، 1/266، 1/31، 1/45 و 1/52 بدست آمد. حالت فوق در مدل چهارم و پنجم بالاترین عملکرد حرارتی را دارا می‌باشد. با استفاده از نانو سیال اکسید آهن با سه غلظت حجمی 0/01%، 0/03% و 0/06% نسبت به سیال آب، میانگین ضریب بهره در کلیه رینولدزها برای حالت فوق در مدل چهارم به ترتیب0/91%، 3/97% و 4/98% بصورت مشابه در مدل پنجم این افزایش به ترتیب1/58%، 4/56% و 5/66% بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Effect of Iron Oxide Nanofluid (Fe3O4) and Secondary Flow Injection on the Thermal Performance in Horizontal Pipe

نویسندگان English

sajad behzadipour 1
Mohammad Bagher Mohammad Sadeghiazad 2
1 Department of Mechanical Engineering, Urmia University of Technology
2 Department of Mechanical Engineering, Urmia University of Technology
چکیده English

This study has experimentally investigated the effect of Fe3O4 and secondary flow injection on convection heat transfer and friction coefficient on a horizontal pipe. Secondary flow injected to main flow to make more turbulence to five different models. Water and Fe3O4 have been considered in5865 to 18800 Reynolds range and three0.01%,0.03% and0.06% volume concentrations. Length and diameter of test tube considered 65 cm and 1.7 cm, respectively, the diameter of secondary flow injection holes considered 3 mm and 4.5 mm, the ratio of volumetric flow rate to total flow considered 10% and 20% and distance between secondary flow injection holes considered 4 and 2. The results show that the increase of diameter of secondary flow injections holes, the ratio of secondary flow volumetric flow rate to total flow and the decrease of distance between secondary flow injection holes are effective on coefficient of utilization increase. The highest coefficient of utilization achieved =20%, =2 in each model using water fluid in d=4.5 state. In this state, the mean of coefficient of utilization achieved 1.256, 1.266, 1.31, 1.45 and 1.52 for first, second, third, fourth and fifth models in all Reynolds, respectably. The above state has the highest thermal performance in the fourth and fifth models. The mean of coefficient of utilization in all Reynolds increased 0.91%, 3.97% and 4.98% for the above state in the fourth model using Fe3O4 with three0.01%,0.03% and0.06% volume concentrations to water fluid, respectively. Similarly, this increase achieved 1.58%, 4.56% and 5.66% in the fifth model, respectively.

کلیدواژه‌ها English

Thermal Performance
Nanofluid
Secondary flow injection
experimentally
[1] Raghulnath D, Saravanan K, Lakshmanan P, Ranjith Kuma M, Hariharan K. B. Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator, Materialstoday proceedings. 2021;37(2):3721-24. [DOI:10.1016/j.matpr.2020.10.189]
[1] Raghulnath D, Saravanan K, Lakshmanan P, Ranjith Kuma M, Hariharan K. B. Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator, Materialstoday proceedings. 2021;37(2):3721-24. [DOI:10.1016/j.matpr.2020.10.189]
[2] Kır D, Ertürk H. Convective heat transfer and pressure drop characteristics of grapheme water nanofluids in transitional flow. International Communications in Heat and Mass Transfer. 2021;121:105092. [DOI:10.1016/j.icheatmasstransfer.2020.105092]
[2] Kır D, Ertürk H. Convective heat transfer and pressure drop characteristics of grapheme water nanofluids in transitional flow. International Communications in Heat and Mass Transfer. 2021;121:105092. [DOI:10.1016/j.icheatmasstransfer.2020.105092]
[3] Marzouk S. A, Abou Al-Sood M. M, Fakharany M. K, El-Said E. M. S. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: Experimental study. International Journal of Thermal Sciences. 2021;161:106742. [DOI:10.1016/j.ijthermalsci.2020.106742]
[3] Marzouk S. A, Abou Al-Sood M. M, Fakharany M. K, El-Said E. M. S. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: Experimental study. International Journal of Thermal Sciences. 2021;161:106742. [DOI:10.1016/j.ijthermalsci.2020.106742]
[4] Feng S, Cheng X, Bi Q, Pan H, Liu Z. Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts. International Journal of Heat and Mass Transfer. 2020;146:118817. [DOI:10.1016/j.ijheatmasstransfer.2019.118817]
[4] Feng S, Cheng X, Bi Q, Pan H, Liu Z. Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts. International Journal of Heat and Mass Transfer. 2020;146:118817. [DOI:10.1016/j.ijheatmasstransfer.2019.118817]
[5] Khanjani S, Tavakoli A, Jalali Vahid D, Nazari M, Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger, Modares Mechanical Engineering, 2015;15(11):181-90.[Persian]
[5] Khanjani S, Tavakoli A, Jalali Vahid D, Nazari M, Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger, Modares Mechanical Engineering, 2015;15(11):181-90.[Persian]
[6] Andrzejczy R, Muszynski T, Kozak P. Experimental investigation of heat transfer enhancement in straight and Ubend double-pipe heat exchanger with wire insert. Chemical Engineering & Processing: Process Intensification. 2019;136:177-90. [DOI:10.1016/j.cep.2019.01.003]
[6] Andrzejczy R, Muszynski T, Kozak P. Experimental investigation of heat transfer enhancement in straight and Ubend double-pipe heat exchanger with wire insert. Chemical Engineering & Processing: Process Intensification. 2019;136:177-90. [DOI:10.1016/j.cep.2019.01.003]
[7] Syam Sundar L, Bhramara P, Ravi Kumar N. T, Singh M. K, Sousa A. C. M. Experimental heat transfer, friction factor and effectiveness analysis of 〖Fe〗_3 O_4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer. 2017;109:440-53. [DOI:10.1016/j.ijheatmasstransfer.2017.02.022]
[7] Syam Sundar L, Bhramara P, Ravi Kumar N. T, Singh M. K, Sousa A. C. M. Experimental heat transfer, friction factor and effectiveness analysis of 〖Fe〗_3 O_4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer. 2017;109:440-53. [DOI:10.1016/j.ijheatmasstransfer.2017.02.022]
[8] Nazari M, Jalali Vahid D, Khanjani S. Experimental investigation of force convection heat transfer in porous channel with internal heat generation, Modares Mechanical Engineering. 2014;15(1):203-10.[Persian]
[8] Nazari M, Jalali Vahid D, Khanjani S. Experimental investigation of force convection heat transfer in porous channel with internal heat generation, Modares Mechanical Engineering. 2014;15(1):203-10.[Persian]
[9] Sarafraz M. M, Hormozi F, Nikkhah V, Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Experimental Thermal and Fluid Science. 2016;78:41-49. [DOI:10.1016/j.expthermflusci.2016.05.014]
[9] Sarafraz M. M, Hormozi F, Nikkhah V, Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Experimental Thermal and Fluid Science. 2016;78:41-49. [DOI:10.1016/j.expthermflusci.2016.05.014]
[10] Esfe M. H, Saedodin S, Turbulent forced convection heat transfer and thermophysical properties of Mgo-water nanofluid with consideration of different nanoparticles diameter, an empirical study. Journal of Thermal Analysis and Calorimetry. 2015;119(2):1205-13. [DOI:10.1007/s10973-014-4197-1]
[10] Esfe M. H, Saedodin S, Turbulent forced convection heat transfer and thermophysical properties of Mgo-water nanofluid with consideration of different nanoparticles diameter, an empirical study. Journal of Thermal Analysis and Calorimetry. 2015;119(2):1205-13. [DOI:10.1007/s10973-014-4197-1]
[11] Bozorgan N, Panahizadeh F, Bozorgan N, Investigating the using of Al2O3/EG nanofluids as coolants in a double-tube heat exchanger. Modares Mechanical Engineering. 2011;11(3):75-84.[Persian]
[11] Bozorgan N, Panahizadeh F, Bozorgan N, Investigating the using of Al2O3/EG nanofluids as coolants in a double-tube heat exchanger. Modares Mechanical Engineering. 2011;11(3):75-84.[Persian]
[12] Sarafraz M. M, Hormozi F, Intensification of forced convective heat transfer using biological nanofluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science. 2015;66:279-89. [DOI:10.1016/j.expthermflusci.2015.03.028]
[12] Sarafraz M. M, Hormozi F, Intensification of forced convective heat transfer using biological nanofluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science. 2015;66:279-89. [DOI:10.1016/j.expthermflusci.2015.03.028]
[13] Khedkar R. S, Sonawane S. S, Wasewar K. L, Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering.2013;51:318-23. [DOI:10.1016/j.proeng.2013.01.043]
[13] Khedkar R. S, Sonawane S. S, Wasewar K. L, Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering.2013;51:318-23. [DOI:10.1016/j.proeng.2013.01.043]
[14] Sonawane S. S, Khedkar R. S, Wasewar K. L, Study on concentric tube heat exchanger heat transfer performance using Al2O3 - water based nanofluids. International Communications in Heat and Mass Transfer. 2013;49:60-8. [DOI:10.1016/j.icheatmasstransfer.2013.10.001]
[14] Sonawane S. S, Khedkar R. S, Wasewar K. L, Study on concentric tube heat exchanger heat transfer performance using Al2O3 - water based nanofluids. International Communications in Heat and Mass Transfer. 2013;49:60-8. [DOI:10.1016/j.icheatmasstransfer.2013.10.001]
[15] Khan M. S, Mei S, Shabnam, Shah N. A, Chung J. D, Khan A, Shah S. A. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Nanomaterials. 2022;12(4):660. [DOI:10.3390/nano12040660]
[15] Khan M. S, Mei S, Shabnam, Shah N. A, Chung J. D, Khan A, Shah S. A. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Nanomaterials. 2022;12(4):660. [DOI:10.3390/nano12040660]
[16] Omiddezyani S, Khazaee I, Gharehkhani S, Ashjaee M, Shemirani F, Zandian V. Experimental Investigation of Convective Heat Transfer of Ferro-Nanofluid Containing Graphene in a Circular Tube under Magnetic Field. Modares Mechanical Engineering. 2019;19(8):1929-41.[Persian]
[16] Omiddezyani S, Khazaee I, Gharehkhani S, Ashjaee M, Shemirani F, Zandian V. Experimental Investigation of Convective Heat Transfer of Ferro-Nanofluid Containing Graphene in a Circular Tube under Magnetic Field. Modares Mechanical Engineering. 2019;19(8):1929-41.[Persian]
[17] Sheikhzadeh Gh. A, Nazififard M, Maddahian R, Kazemi Kh. Numerical Simulation of Nanofluid Heat Transfer in a Tube Equipped with Twisted Tape Using the Eulerian-Lagrangian Two-Phase Model. Modares Mechanical Engineering. 2019;19(1):53-62.[Persian]
[17] Sheikhzadeh Gh. A, Nazififard M, Maddahian R, Kazemi Kh. Numerical Simulation of Nanofluid Heat Transfer in a Tube Equipped with Twisted Tape Using the Eulerian-Lagrangian Two-Phase Model. Modares Mechanical Engineering. 2019;19(1):53-62.[Persian]
[18] Li X. F, Zhu D. S, Wang X. J, Wang N, Gao J. W, Li H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta. 2008;469:98-103. [DOI:10.1016/j.tca.2008.01.008]
[18] Li X. F, Zhu D. S, Wang X. J, Wang N, Gao J. W, Li H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta. 2008;469:98-103. [DOI:10.1016/j.tca.2008.01.008]
[19]Sundar L. S, Singh M. K, Sousa A. C. M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7-14. [DOI:10.1016/j.icheatmasstransfer.2013.02.014]
[19]Sundar L. S, Singh M. K, Sousa A. C. M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7-14. [DOI:10.1016/j.icheatmasstransfer.2013.02.014]
[20] Nazari M, Ashouri M, Kayhani M. H, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal Sciences. 2015;88:33-9. [DOI:10.1016/j.ijthermalsci.2014.08.013]
[20] Nazari M, Ashouri M, Kayhani M. H, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal Sciences. 2015;88:33-9. [DOI:10.1016/j.ijthermalsci.2014.08.013]
[21] Rafati R, Hamidi A. A, Shariati Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering. 2012 March;45-46:9-14. [DOI:10.1016/j.applthermaleng.2012.03.028]
[21] Rafati R, Hamidi A. A, Shariati Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering. 2012 March;45-46:9-14. [DOI:10.1016/j.applthermaleng.2012.03.028]
[22] Azaria A, Derakhshandehb M. A nexperimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. Journal of the Taiwan Institute of Chemical Engineers. 2015;52:31-9. [DOI:10.1016/j.jtice.2015.02.009]
[22] Azaria A, Derakhshandehb M. A nexperimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. Journal of the Taiwan Institute of Chemical Engineers. 2015;52:31-9. [DOI:10.1016/j.jtice.2015.02.009]
[23] Syam Sundar L, Ravi Kumar N. T, Mulat Addis B, Bhramara P, Singh M. K, Sousa A. C. M. Heat transfer and effectiveness experimentally-based analysis of wire coil with core-rod inserted in Fe3O4/water nanofluid flow in a double pipe U-bend heat exchanger. International Journal of Heat and Mass Transfer. 2019 January;134:405-419. [DOI:10.1016/j.ijheatmasstransfer.2019.01.041]
[23] Syam Sundar L, Ravi Kumar N. T, Mulat Addis B, Bhramara P, Singh M. K, Sousa A. C. M. Heat transfer and effectiveness experimentally-based analysis of wire coil with core-rod inserted in Fe3O4/water nanofluid flow in a double pipe U-bend heat exchanger. International Journal of Heat and Mass Transfer. 2019 January;134:405-419. [DOI:10.1016/j.ijheatmasstransfer.2019.01.041]
[24]Kayhani M. H, Soltanzadeh H, Heyhat M. M, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer. 2012 January;39:456-62. [DOI:10.1016/j.icheatmasstransfer.2012.01.004]
[24]Kayhani M. H, Soltanzadeh H, Heyhat M. M, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer. 2012 January;39:456-62. [DOI:10.1016/j.icheatmasstransfer.2012.01.004]
[25] Rohit S. K, Shriram S. S, Kailas L.W, Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid. International Communications in Heat and Mass Transfer. 2014 October;57:163-9. [DOI:10.1016/j.icheatmasstransfer.2014.07.011]
[25] Rohit S. K, Shriram S. S, Kailas L.W, Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid. International Communications in Heat and Mass Transfer. 2014 October;57:163-9. [DOI:10.1016/j.icheatmasstransfer.2014.07.011]
[26] Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer. 2003;125:151-55. [DOI:10.1115/1.1532008]
[26] Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer. 2003;125:151-55. [DOI:10.1115/1.1532008]
[27] Sneha P, Subrahmanyam T, Naidu S.V. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. International Journal of Thermal Sciences. 2019;136:530-8. [DOI:10.1016/j.ijthermalsci.2018.11.008]
[27] Sneha P, Subrahmanyam T, Naidu S.V. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. International Journal of Thermal Sciences. 2019;136:530-8. [DOI:10.1016/j.ijthermalsci.2018.11.008]
[28] Webb R.L, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer. 1981;24:715-26. [DOI:10.1016/0017-9310(81)90015-6]
[28] Webb R.L, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer. 1981;24:715-26. [DOI:10.1016/0017-9310(81)90015-6]
[29] Chandrasekar M, Suresh S. Experiments to Explore the Mechanisms of Heat Transfer in Nanocrystalline Alumina/Water Nanofluid under Laminar and Turbulent Flow Conditions. Experimental Heat Transfer. 2011;24(3):234-56. [DOI:10.1080/08916152.2010.523809]
[29] Chandrasekar M, Suresh S. Experiments to Explore the Mechanisms of Heat Transfer in Nanocrystalline Alumina/Water Nanofluid under Laminar and Turbulent Flow Conditions. Experimental Heat Transfer. 2011;24(3):234-56. [DOI:10.1080/08916152.2010.523809]
[30] Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer. 2009;52(13-14):3187-96. [DOI:10.1016/j.ijheatmasstransfer.2009.02.006]
[30] Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer. 2009;52(13-14):3187-96. [DOI:10.1016/j.ijheatmasstransfer.2009.02.006]