مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عملکرد سیستم پمپ حرارتی ترکیبی با کلکتور فتوولتائیک یکپارچه با سقف برای ساختمانی با انرژی صفر در تهران

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی دکتری مکانیک دانشگاه آزاد اسلامی واحد تهران جنوب، دانشکده مکانیک
2 مرکز تحقیقات مدل‌سازی و بهینه‌سازی در علوم و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 مرکز تحقیقات مدل‌سازی و بهینه ‌سازی در علوم و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
مفهوم ساختمان‌ انرژی صفر [1] برای کاهش مصرف انرژی و انتشار کربن در سطح جهانی و در بخش ساختمان معرفی شده است. برای اجرای ساختمان‌های‌ انرژی صفر از سیستم‌های انرژی تجدیدپذیر مانند کلکتور حرارتی خورشیدی، کلکتور فتوولتائیک [2] و سیستم‌های پمپ حرارتی منبع هوا [3] استفاده می‌شود. این مطالعه یک سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با ساختمان را برای تحقق ساختمان‌ انرژی صفر در مقیاس کوچک پیشنهاد می‌کند. در این مقاله به منظور ارزیابی کارکرد سیستم، یک مدل سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با سقف ساختمان طراحی شده و مدل بار ساختمان نیز بر اساس شرایط واقعی ساختمان تعریف شد. سپس عملکرد گرمایشی و سرمایشی سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با سقف ساختمان به مدت یک سال با استفاده از نرم افزار TRNSYS [4] شبیه‌سازی دینامیکی شد و سیستم برای کاربردهای مختلف از دیدگاه‌های انرژی، اقتصادی و زیست‌محیطی به صورت عددی مورد ارزیابی قرار گرفت. نتایج نشان داد برای این سیستم مصرف انرژی تجدیدناپذیر اولیه 19/9 کیلووات ساعت بر مترمربع در سال می‌باشد. با توجه به اینکه این مقدار کمتر از مقدار آستانه انرژی گرمایشی برای ساختمان انرژی صفر بود، لذا سیستم پیشنهادی شرایط ساختمان‌ انرژی صفر را به خوبی برآورده کرد. بعلاوه نشان داده شد که برای یک منطقه مشخص، با اینکه فناوری فتوولتائیک حرارتی منجر به کاهش مصرف انرژی اولیه تجدیدناپذیر می‌شود ولی انرژی خورشیدی تولیدی توسط آن از انرژی تولیدی توسط کلکتورهای فتوولتائیک کمتر است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the Performance of a Combined Heat Pump System with a Photovoltaic Collector Integrated with a Roof for a Zero-Energy Building in Tehran

نویسندگان English

Alireza Asadi 1
Farzad Jafarkazemi 2
Mohammadhasan Jalaleddin Abyaneh 3
1 Ph.D. Candidate, Mechanical Engineering Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Research Centre for Modelling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Modeling and Optimization Research Center in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده English

The concept of Zero Energy Building [5] has been introduced globally to reduce energy consumption and carbon emissions in the building sector. Renewable energy systems such as Solar Thermal collectors, Photovoltaic collectors, and Heat Pumps are used to implement ZEBs. This study proposes a Building Integrated Photovoltaic Thermal-Air Source Heat Pump (BIPVT-ASHP) to realize ZEB in a small-scale building. To evaluate the performance of the system, a BIPVT-ASHP hybrid system model was designed, and also the building load model was defined based on the actual building conditions. Then, the heating and cooling performance of the BIPVT-ASHP system was dynamically simulated for one year using TRNSYS software. Then the system was numerically evaluated from energy, economic and environmental perspectives. According to the results of this study, for this system, the initial non-renewable energy consumption was 1.29 kWh/m2 per year, which was less than the heating energy threshold for the ZEB, and the proposed system met well the ZEB conditions. In addition, it was shown that for a given area, photovoltaic/thermal technology leads to a further reduction in non-renewable primary energy consumption but less solar thermal energy production compared to traditional separate production using photovoltaic [2] collectors.

کلیدواژه‌ها English

Solar Energy
zero energy building
air-source heat pump
building integrated photovoltaic heat collector
Alessandro M, Niccolao A, Claudio DP, Fabrizio L. Photovoltaic-thermal solar-assisted heat pump systems for building applications: integration and design methods. Energy and Built Environment. 2021.
Alessandro M, Niccolao A, Claudio DP, Fabrizio L. Photovoltaic-thermal solar-assisted heat pump systems for building applications: integration and design methods. Energy and Built Environment. 2021.
Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy. 2018;165:167-77. [DOI:10.1016/j.solener.2018.03.028]
Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy. 2018;165:167-77. [DOI:10.1016/j.solener.2018.03.028]
Bae S, Chae S, Nam Y. Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation. Energies. 2022;15(2):528. [DOI:10.3390/en15020528]
Bae S, Chae S, Nam Y. Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation. Energies. 2022;15(2):528. [DOI:10.3390/en15020528]
Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: Standard Component Library Overview. TRNSYS. 2017;3:389-96.
Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: Standard Component Library Overview. TRNSYS. 2017;3:389-96.
Thomas Boermans AH, Sven Schimschar, Jan Grözinger, Markus Offermann. Principles for Nearly Zero-Energy Buildings. Ecofys Germany GmbH; 2020.
Thomas Boermans AH, Sven Schimschar, Jan Grözinger, Markus Offermann. Principles for Nearly Zero-Energy Buildings. Ecofys Germany GmbH; 2020.
ENERGY I, AGENCY. World Energy Outlook 2021. IEA, Paris; 2021.
ENERGY I, AGENCY. World Energy Outlook 2021. IEA, Paris; 2021.
Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy and Buildings. 2008;40(3):394-8. [DOI:10.1016/j.enbuild.2007.03.007]
Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy and Buildings. 2008;40(3):394-8. [DOI:10.1016/j.enbuild.2007.03.007]
Roaf S, Brotas L, Nicol F. Counting the costs of comfort. Building Research & Information. 2015;43(3):269-73. [DOI:10.1080/09613218.2014.998948]
Roaf S, Brotas L, Nicol F. Counting the costs of comfort. Building Research & Information. 2015;43(3):269-73. [DOI:10.1080/09613218.2014.998948]
IEA. Net Zero by 2050. Paris IEA; 2021.
IEA. Net Zero by 2050. Paris IEA; 2021.
IEA. Heat Pumps. Paris 2021.
IEA. Heat Pumps. Paris 2021.
Rimbala J, Kyncl J. The possibilities of reducing energy consumption for the preparation of hot water by suitable switching of the heat pump2020. 1-4 p. [DOI:10.1109/EPE51172.2020.9269251]
Rimbala J, Kyncl J. The possibilities of reducing energy consumption for the preparation of hot water by suitable switching of the heat pump2020. 1-4 p. [DOI:10.1109/EPE51172.2020.9269251]
Smitt S, Tolstorebrov I, Gullo P, Pardiñas Á, Hafner A. Energy use and retrofitting potential of heat pumps in cold climate hotels. Journal of Cleaner Production. 2021;298:126799. [DOI:10.1016/j.jclepro.2021.126799]
Smitt S, Tolstorebrov I, Gullo P, Pardiñas Á, Hafner A. Energy use and retrofitting potential of heat pumps in cold climate hotels. Journal of Cleaner Production. 2021;298:126799. [DOI:10.1016/j.jclepro.2021.126799]
Kosoi A, Antipov Y, Shkarin K, Shatalov I, Sokolov D. A multistage heat pump unit model for reducing energy consumption of space heating at low ambient temperatures. IOP Conference Series: Materials Science and Engineering. 2021;1100:012045. [DOI:10.1088/1757-899X/1100/1/012045]
Kosoi A, Antipov Y, Shkarin K, Shatalov I, Sokolov D. A multistage heat pump unit model for reducing energy consumption of space heating at low ambient temperatures. IOP Conference Series: Materials Science and Engineering. 2021;1100:012045. [DOI:10.1088/1757-899X/1100/1/012045]
Zuev O, Garanov S, Ivanova E, Karpukhin A. Investigation of the Efficiency of Autocascade and Cascade Heat Pumps in Cold Climate. Chemical and Petroleum Engineering. 2020;56:448-55. [DOI:10.1007/s10556-020-00793-w]
Zuev O, Garanov S, Ivanova E, Karpukhin A. Investigation of the Efficiency of Autocascade and Cascade Heat Pumps in Cold Climate. Chemical and Petroleum Engineering. 2020;56:448-55. [DOI:10.1007/s10556-020-00793-w]
Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Wiley; 2013. [DOI:10.1002/9781118671603]
Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Wiley; 2013. [DOI:10.1002/9781118671603]
Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management. 2018;165:113-26. [DOI:10.1016/j.enconman.2018.03.040]
Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management. 2018;165:113-26. [DOI:10.1016/j.enconman.2018.03.040]
Vallati A, Ocłoń P, Colucci C, Mauri L, de Lieto Vollaro R, Taler J. Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy. 2019;174:91-6. [DOI:10.1016/j.energy.2019.02.152]
Vallati A, Ocłoń P, Colucci C, Mauri L, de Lieto Vollaro R, Taler J. Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy. 2019;174:91-6. [DOI:10.1016/j.energy.2019.02.152]
Aguilar-Jiménez JA, Hernández-Callejo L, Alonso-Gómez V, Velázquez N, López-Zavala R, Acuña A, et al. Techno-economic analysis of hybrid PV/T systems under different climate scenarios and energy tariffs. Solar Energy. 2020;212:191-202. [DOI:10.1016/j.solener.2020.10.079]
Aguilar-Jiménez JA, Hernández-Callejo L, Alonso-Gómez V, Velázquez N, López-Zavala R, Acuña A, et al. Techno-economic analysis of hybrid PV/T systems under different climate scenarios and energy tariffs. Solar Energy. 2020;212:191-202. [DOI:10.1016/j.solener.2020.10.079]
Li M, Zhong D, Ma T, Kazemian A, Gu W. Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis. Energy Conversion and Management. 2020;206:112479. [DOI:10.1016/j.enconman.2020.112479]
Li M, Zhong D, Ma T, Kazemian A, Gu W. Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis. Energy Conversion and Management. 2020;206:112479. [DOI:10.1016/j.enconman.2020.112479]
Song Z, Ji J, Cai J, Li Z, Yu B. The performance comparison of the direct-expansion solar assisted heat pumps with three different PV evaporators. Energy Conversion and Management. 2020;213:112781. [DOI:10.1016/j.enconman.2020.112781]
Song Z, Ji J, Cai J, Li Z, Yu B. The performance comparison of the direct-expansion solar assisted heat pumps with three different PV evaporators. Energy Conversion and Management. 2020;213:112781. [DOI:10.1016/j.enconman.2020.112781]
Srivastava T. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy. 2013.
Srivastava T. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy. 2013.
Yazdanifard F, Ameri M. Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renewable and Sustainable Energy Reviews. 2018;97:529-53. [DOI:10.1016/j.rser.2018.08.053]
Yazdanifard F, Ameri M. Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renewable and Sustainable Energy Reviews. 2018;97:529-53. [DOI:10.1016/j.rser.2018.08.053]
Nemati Jahromi S, Vadiee A, Yaghoubi M. Exergy and Economic Evaluation of a Commercially Available PV/T Collector for Different Climates in Iran. Energy Procedia. 2015;75:444-56. [DOI:10.1016/j.egypro.2015.07.416]
Nemati Jahromi S, Vadiee A, Yaghoubi M. Exergy and Economic Evaluation of a Commercially Available PV/T Collector for Different Climates in Iran. Energy Procedia. 2015;75:444-56. [DOI:10.1016/j.egypro.2015.07.416]
Al-Waeli AHA, Kazem, H. A., Chaichan, M. T., & Sopian, K. Photovoltaic/Thermal (PV/T) Systems: Springer International Publishing; 2019. [DOI:10.1007/978-3-030-27824-3]
Al-Waeli AHA, Kazem, H. A., Chaichan, M. T., & Sopian, K. Photovoltaic/Thermal (PV/T) Systems: Springer International Publishing; 2019. [DOI:10.1007/978-3-030-27824-3]
Bellos E, Tzivanidis C, Moschos K, Antonopoulos KA. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Conversion and Management. 2016;120:306-19. [DOI:10.1016/j.enconman.2016.05.004]
Bellos E, Tzivanidis C, Moschos K, Antonopoulos KA. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Conversion and Management. 2016;120:306-19. [DOI:10.1016/j.enconman.2016.05.004]
Suleman F, Dincer I, Agelin-Chaab M. Energy and exergy analyses of an integrated solar heat pump system. Applied Thermal Engineering. 2014;73(1):559-66. [DOI:10.1016/j.applthermaleng.2014.08.006]
Suleman F, Dincer I, Agelin-Chaab M. Energy and exergy analyses of an integrated solar heat pump system. Applied Thermal Engineering. 2014;73(1):559-66. [DOI:10.1016/j.applthermaleng.2014.08.006]
Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J. Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Solar Energy. 2013;97:551-68. [DOI:10.1016/j.solener.2013.09.022]
Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J. Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Solar Energy. 2013;97:551-68. [DOI:10.1016/j.solener.2013.09.022]
Ted James AG, Michael Woodhouse, Robert Margolis and Sean Ong. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. U.S: Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.; 2011. [DOI:10.2172/1029857]
Ted James AG, Michael Woodhouse, Robert Margolis and Sean Ong. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. U.S: Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.; 2011. [DOI:10.2172/1029857]
Fadejev J, Simson R, Kurnitski J, Kesti J, Mononen T, Lautso P. Geothermal Heat Pump Plant Performance in a Nearly Zero-energy Building. Energy Procedia. 2016;96:489-502. [DOI:10.1016/j.egypro.2016.09.087]
Fadejev J, Simson R, Kurnitski J, Kesti J, Mononen T, Lautso P. Geothermal Heat Pump Plant Performance in a Nearly Zero-energy Building. Energy Procedia. 2016;96:489-502. [DOI:10.1016/j.egypro.2016.09.087]
Kalamees T. IDA ICE: the simulation tool for making the whole building energy- and HAM analysis. 2004.
Kalamees T. IDA ICE: the simulation tool for making the whole building energy- and HAM analysis. 2004.
Safarzarzadeh H, Fathollahi S. Simulation Study on the Thermal Performance of a direct-expansion solar-assisted heat pump for water heating in Kermanshah climate. mdrsjrns. 2016;15(12):232-42.
Safarzarzadeh H, Fathollahi S. Simulation Study on the Thermal Performance of a direct-expansion solar-assisted heat pump for water heating in Kermanshah climate. mdrsjrns. 2016;15(12):232-42.
Mortezapour H, Ghobadian B, Khoshtaghaza MH, Minaei S. Drying Kinetics and Quality Characteristics of Saffron Dried with a Heat Pump Assisted Hybrid Photovoltaic-thermal Solar Dryer. mdrsjrns. 2014;16(1):33-45.
Mortezapour H, Ghobadian B, Khoshtaghaza MH, Minaei S. Drying Kinetics and Quality Characteristics of Saffron Dried with a Heat Pump Assisted Hybrid Photovoltaic-thermal Solar Dryer. mdrsjrns. 2014;16(1):33-45.
Tabatabaekoloor R, Jafarian H, Moosavi Seyedi SR. Experimental Investigation on Dill Drying in a Solar-Assisted Heat Pump Dryer. mdrsjrns. 2017;19(4):835-45.
Tabatabaekoloor R, Jafarian H, Moosavi Seyedi SR. Experimental Investigation on Dill Drying in a Solar-Assisted Heat Pump Dryer. mdrsjrns. 2017;19(4):835-45.
Bagheri Fahraji E, Maerefat M. Dynamic Modeling of Air to Air Variable Refrigerant Flow Heat Pump System. mdrsjrns. 2018;17(11):397-407.
Bagheri Fahraji E, Maerefat M. Dynamic Modeling of Air to Air Variable Refrigerant Flow Heat Pump System. mdrsjrns. 2018;17(11):397-407.
Debbarma M, Sudhakar K, Baredar P. Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies. 2017;3(3):263-71. [DOI:10.1016/j.reffit.2016.11.013]
Debbarma M, Sudhakar K, Baredar P. Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies. 2017;3(3):263-71. [DOI:10.1016/j.reffit.2016.11.013]
Conti P, Schito E, Testi D. Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building. Energies. 2019;12:1582. [DOI:10.3390/en12081582]
Conti P, Schito E, Testi D. Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building. Energies. 2019;12:1582. [DOI:10.3390/en12081582]
Hekmatipour F, Jl M, Marofi A. Economic Feasibility and Technical Possibility of Net- Zero Energy Building in Tehran. Indian Journal of Science and Technology. 2019;12:43710. [DOI:10.17485/ijst/2019/v12i25/143710]
Hekmatipour F, Jl M, Marofi A. Economic Feasibility and Technical Possibility of Net- Zero Energy Building in Tehran. Indian Journal of Science and Technology. 2019;12:43710. [DOI:10.17485/ijst/2019/v12i25/143710]
Yu G, Yang H, Yan Z, Kyeredey Ansah M. A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. Applied Thermal Engineering. 2021;182:116081. [DOI:10.1016/j.applthermaleng.2020.116081]
Yu G, Yang H, Yan Z, Kyeredey Ansah M. A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. Applied Thermal Engineering. 2021;182:116081. [DOI:10.1016/j.applthermaleng.2020.116081]
Arabkoohsar A, Xie G, Wei J, Asok A, Behzadi A, Mahian O. Perspectives and review of photovoltaic-thermal panels in net-zero energy buildings. Journal of Thermal Analysis and Calorimetry. 2022. [DOI:10.1007/s10973-021-11191-6]
Arabkoohsar A, Xie G, Wei J, Asok A, Behzadi A, Mahian O. Perspectives and review of photovoltaic-thermal panels in net-zero energy buildings. Journal of Thermal Analysis and Calorimetry. 2022. [DOI:10.1007/s10973-021-11191-6]
Crippa M, Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. and Vignati, E. Fossil CO2 emissions of all world countries - 2020 Report. 2020.
Crippa M, Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. and Vignati, E. Fossil CO2 emissions of all world countries - 2020 Report. 2020.
Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: mathematical reference. TRNSYS. 2017;4:389-96.
Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: mathematical reference. TRNSYS. 2017;4:389-96.
Meteonorm [Internet]. 2021. Available from: meteonorm.com.
Meteonorm [Internet]. 2021. Available from: meteonorm.com.
TESS T. TESS COMPONENT LIBRARIES.
TESS T. TESS COMPONENT LIBRARIES.
Singh A, Khatri K. Energy and exergy analysis of a solar tri-generation system using TRNSYS2016.
Singh A, Khatri K. Energy and exergy analysis of a solar tri-generation system using TRNSYS2016.
Wang X, Xia L, Bales C, Zhang X, Copertaro B, Pan S, et al. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renewable Energy. 2020;146:2472-87. [DOI:10.1016/j.renene.2019.08.096]
Wang X, Xia L, Bales C, Zhang X, Copertaro B, Pan S, et al. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renewable Energy. 2020;146:2472-87. [DOI:10.1016/j.renene.2019.08.096]
Sopian K, Alwaeli AHA, Kazem HA. Advanced photovoltaic thermal collectors. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2019;234(2):206-13. [DOI:10.1177/0954408919869541]
Sopian K, Alwaeli AHA, Kazem HA. Advanced photovoltaic thermal collectors. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2019;234(2):206-13. [DOI:10.1177/0954408919869541]
Öztürk M, Çalişir O, Genç G. Energy, exergy and economic (3E) evaluation of the photovoltaic/thermal collector-assisted heat pump domestic water heating system for different climatic regions in Turkey. Journal of Thermal Analysis and Calorimetry. 2021. [DOI:10.1007/s10973-021-10675-9]
Öztürk M, Çalişir O, Genç G. Energy, exergy and economic (3E) evaluation of the photovoltaic/thermal collector-assisted heat pump domestic water heating system for different climatic regions in Turkey. Journal of Thermal Analysis and Calorimetry. 2021. [DOI:10.1007/s10973-021-10675-9]
Energy IsMo. Electricity tariff 2021: Ministry of Energy; 2022 [Available from: https://tariff.moe.gov.ir/.
Energy IsMo. Electricity tariff 2021: Ministry of Energy; 2022 [Available from: https://tariff.moe.gov.ir/.
Oil Mo. MOP-HSED-GL-307 2021 [Guide to calculating and reporting greenhouse gas emissions]. Available from: https://hse.nipc.ir/uploads/mop-307.pdf.
Oil Mo. MOP-HSED-GL-307 2021 [Guide to calculating and reporting greenhouse gas emissions]. Available from: https://hse.nipc.ir/uploads/mop-307.pdf.
Bhattarai S, Oh J-H, Euh S-H, Krishna Kafle G, Hyun Kim D. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells. 2012;103:184-93. [DOI:10.1016/j.solmat.2012.04.017]
Bhattarai S, Oh J-H, Euh S-H, Krishna Kafle G, Hyun Kim D. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells. 2012;103:184-93. [DOI:10.1016/j.solmat.2012.04.017]