مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ساخت داربست های استخوانی با روش ساخت افزایشی ریزش مذاب و بررسی خواص مکانیکی آنها

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل
2 استادیار گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل
چکیده
بهره ­گیری از تکنیک­های ساخت افزایشی در علم پزشکی موجب تحولی عظیم در این زمینه و به ­خصوص در حیطه مهندسی بافت استخوان شده است. یکی از این تکنیک­ها، فرآیند ساخت افزایشی ریزش مذاب می ­باشد که برای ساخت داربست­های استخوانی استفاده می­گردد. از دیدگاه مهندسی بافت استخوان، داربست­های استخوانی باید علاوه بر ویژگی­های مورد نیاز بیولوژیکی، دارای خواص مکانیکی قابل قبولی نیز باشند. در این پژوهش ابتدا پارامترهای چاپ شامل ارتفاع لایه، سرعت چاپ و تعداد فیلامنت در هر ردیف تعیین شد. داربست­های استخوانی با 2 ماده مختلف پلی لاکتیک اسید (PLA) و پلی کاپرولاکتون (PCL) ساخته شد و تحت آزمونهای فشاری قرار گرفتند. نتایج تحلیل شده شامل مدول الاستیک و تنش تسلیم با نرم ­افزار Design Expert نشان دهنده ­ی آن بود که افزایش ارتفاع لایه موجب کاهش خواص مکانیکی و افزایش تعداد فیلامنت در هر ردیف باعث افزایش خواص مکانیکی داربست ساخته شده می­گردد. به عنوان مثال برای داربست­های ساخته شده از جنس PLA، حداکثر مدول الاستیک متعلق به داربست 12 فیلامنتی با ارتفاع لایه 1/0 می­باشد که مقدار آن برابر با 319 مگاپاسکال بوده و حداقل مدول الاستیک متعلق به داربست 8 فیلامنتی با ارتفاع لایه 3/0 می­باشد که مقدار آن برابر با 143 مگاپاسکال است. سرعت چاپ برای داربست­های ساخته شده از جنس PLA، تاثیرقابل توجهی بر مدول الاستیک و تنش تسلیم نداشته ولی برای داربست­های ساخته شده از جنس PCL، افزایش سرعت چاپ موجب کاهش مدول الاستیک می­شود ولی اثر قابل توجهی بر تنش تسلیم ندارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fabrication of bone scaffolds by additive manufacturing of fused deposition modeling (FDM) and investigation of their mechanical properties

نویسندگان English

Atef Najafi 1
Abbas Zolfaghari 2
1 Master's student, Mechanical Engineering, Noshirvani University of Technology, Babol, Babol
2 Assistant professor of manufacturing department, faculty of mechanical engineering, Babol Noshirvani University of Technology
چکیده English

The use of Additive Manufacturing (AM) techniques in medical science has resulted in a great change in this field, especially in bone tissue engineering. One of these techniques is the Fused Deposition Modeling (FDM) which is used to make bone scaffolds. From view point of bone tissue engineering, bone scaffolds must have acceptable mechanical properties in addition to the required biological properties. In this study, at first the printing parameters including layer height, printing speed and number of filaments in each row were determined and bone scaffolds were made with two different materials polylactic acid (PLA) and polycaprolactone (PCL) and were subjected to the compression tests. The results of Young’s modulus and yield stress analyzed in Design Expert software showed that increasing the layer height reduces the mechanical properties. Also, increasing the number of filaments in each row increases the elastic modulus of the scaffold. For example, for scaffolds made of PLA, the maximum modulus of elasticity belongs to 12 filament scaffolds with a layer height of 0.1, which is equal to 319 MPa, and the minimum elastic modulus belongs to 8 filament scaffolds with a layer height of 0.3, which is equal to 143 MPa. Printing speed for scaffolds made of PLA does not have a significant effect on the Young’s modulus and yield stress. But for scaffolds made of PCL, increasing the printing speed reduces the modulus of elasticity but it doesn’t have a significant effect on yield stress.

کلیدواژه‌ها English

Additive Manufacturing
Bone scaffold
Printing Parameters
Compression test
Mechanical properties
[1] J.-P. Kruth, Material incress manufacturing by rapid prototyping techniques, CIRP annals, Vol. 40, No. 2, pp. 603-614, 1991. [DOI:10.1016/S0007-8506(07)61136-6]
[1] J.-P. Kruth, Material incress manufacturing by rapid prototyping techniques, CIRP annals, Vol. 40, No. 2, pp. 603-614, 1991. [DOI:10.1016/S0007-8506(07)61136-6]
[2] T. B. Heller, R. M. Hill, A. F. Saggal, Apparatus for forming a solid three-dimensional article from a liquid medium, Google Patents, 1991.
[2] T. B. Heller, R. M. Hill, A. F. Saggal, Apparatus for forming a solid three-dimensional article from a liquid medium, Google Patents, 1991.
[3] E. Malone, H. Lipson, Fab@ Home: the personal desktop fabricator kit, Rapid Prototyping Journal, 2007. [DOI:10.1108/13552540710776197]
[3] E. Malone, H. Lipson, Fab@ Home: the personal desktop fabricator kit, Rapid Prototyping Journal, 2007. [DOI:10.1108/13552540710776197]
[4] C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography, United States Patent, Appl., No. 638905, Filed, 1984.
[4] C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography, United States Patent, Appl., No. 638905, Filed, 1984.
[5] M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, Y. Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication, Biofabrication, Vol. 2, No. 1, pp. 014110, 2010. [DOI:10.1088/1758-5082/2/1/014110]
[5] M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, Y. Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication, Biofabrication, Vol. 2, No. 1, pp. 014110, 2010. [DOI:10.1088/1758-5082/2/1/014110]
[6] R. Bracci, E. Maccaroni, S. Cascinu, Bioresorbable airway splint created with a three-dimensional printer, New England Journal of Medicine, Vol. 368, No. 21, pp. 2043-5, 2013. [DOI:10.1056/NEJMc1206319]
[6] R. Bracci, E. Maccaroni, S. Cascinu, Bioresorbable airway splint created with a three-dimensional printer, New England Journal of Medicine, Vol. 368, No. 21, pp. 2043-5, 2013. [DOI:10.1056/NEJMc1206319]
[7] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, S. J. Hollister, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials, Vol. 27, No. 21, pp. 3964-3972, 2006. [DOI:10.1016/j.biomaterials.2006.02.039]
[7] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, S. J. Hollister, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials, Vol. 27, No. 21, pp. 3964-3972, 2006. [DOI:10.1016/j.biomaterials.2006.02.039]
[8] B. Sepehri, A. Asadi, Analysis of Fracture Modes in Cortical bone Using Optimized Arcan's Device, Modares Mechanical Engineering, Vol. 15, No. 4, 2015.
[8] B. Sepehri, A. Asadi, Analysis of Fracture Modes in Cortical bone Using Optimized Arcan's Device, Modares Mechanical Engineering, Vol. 15, No. 4, 2015.
[9] Q. Fu, E. Saiz, M. N. Rahaman, A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C, Vol. 31, No. 7, pp. 1245-1256, 2011. [DOI:10.1016/j.msec.2011.04.022]
[9] Q. Fu, E. Saiz, M. N. Rahaman, A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C, Vol. 31, No. 7, pp. 1245-1256, 2011. [DOI:10.1016/j.msec.2011.04.022]
[10] P. V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury, Vol. 36, No. 3, pp. S20-S27, 2005. [DOI:10.1016/j.injury.2005.07.029]
[10] P. V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury, Vol. 36, No. 3, pp. S20-S27, 2005. [DOI:10.1016/j.injury.2005.07.029]
[11] R. P. Sari, S. A. Sudjarwo, R. P. Rahayu, W. Prananingrum, S. Revianti, H. Kurniawan, A. F. Bachmid, The effects of Anadara granosa shell-Stichopus hermanni on bFGF expressions and blood vessel counts in the bone defect healing process of Wistar rats, Dental Journal (Majalah Kedokteran Gigi), Vol. 50, No. 4, pp. 194-198, 2017. [DOI:10.20473/j.djmkg.v50.i4.p194-198]
[11] R. P. Sari, S. A. Sudjarwo, R. P. Rahayu, W. Prananingrum, S. Revianti, H. Kurniawan, A. F. Bachmid, The effects of Anadara granosa shell-Stichopus hermanni on bFGF expressions and blood vessel counts in the bone defect healing process of Wistar rats, Dental Journal (Majalah Kedokteran Gigi), Vol. 50, No. 4, pp. 194-198, 2017. [DOI:10.20473/j.djmkg.v50.i4.p194-198]
[12] S. Naghieh, M. K. Ravari, M. Badrossamay, E. Foroozmehr, M. Kadkhodaei, Finite element analysis for predicting the mechanical properties of bone scaffolds fabricated by fused deposition modeling (FDM), in Proceeding of, 450-454.
[12] S. Naghieh, M. K. Ravari, M. Badrossamay, E. Foroozmehr, M. Kadkhodaei, Finite element analysis for predicting the mechanical properties of bone scaffolds fabricated by fused deposition modeling (FDM), in Proceeding of, 450-454.
[13] ایمانی, س. میثاق, ربیعی, س. محمود, م. گودرزی, علی, دردل, بررسی رفتار مکانیکی داربست های متخلخل بکار رفته در مهندسی بافت استخوان با استفاده از مدل سازی میکرومکانیکی, مهندسی مکانیک مدرس, Vol. 17, No. 9, pp. 397-408, 2017.
[13] ایمانی, س. میثاق, ربیعی, س. محمود, م. گودرزی, علی, دردل, بررسی رفتار مکانیکی داربست های متخلخل بکار رفته در مهندسی بافت استخوان با استفاده از مدل سازی میکرومکانیکی, مهندسی مکانیک مدرس, Vol. 17, No. 9, pp. 397-408, 2017.
[14] S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, K. K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications, Materials Science and Engineering: C, Vol. 47, pp. 237-247, 2015. [DOI:10.1016/j.msec.2014.11.024]
[14] S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, K. K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications, Materials Science and Engineering: C, Vol. 47, pp. 237-247, 2015. [DOI:10.1016/j.msec.2014.11.024]
[15] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology, Vol. 21, No. 4, pp. 157-161, 2003. [DOI:10.1016/S0167-7799(03)00033-7]
[15] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology, Vol. 21, No. 4, pp. 157-161, 2003. [DOI:10.1016/S0167-7799(03)00033-7]
[16] D. W. Hutmacher, M. Sittinger, M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, TRENDS in Biotechnology, Vol. 22, No. 7, pp. 354-362, 2004. [DOI:10.1016/j.tibtech.2004.05.005]
[16] D. W. Hutmacher, M. Sittinger, M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, TRENDS in Biotechnology, Vol. 22, No. 7, pp. 354-362, 2004. [DOI:10.1016/j.tibtech.2004.05.005]
[17] C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers, Vol. 8, No. 2, pp. 42, 2016. [DOI:10.3390/polym8020042]
[17] C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers, Vol. 8, No. 2, pp. 42, 2016. [DOI:10.3390/polym8020042]
[18] T. W. Gilbert, T. L. Sellaro, S. F. Badylak, Decellularization of tissues and organs, Biomaterials, Vol. 27, No. 19, pp. 3675-3683, 2006. [DOI:10.1016/j.biomaterials.2006.02.014]
[18] T. W. Gilbert, T. L. Sellaro, S. F. Badylak, Decellularization of tissues and organs, Biomaterials, Vol. 27, No. 19, pp. 3675-3683, 2006. [DOI:10.1016/j.biomaterials.2006.02.014]
[19] P. A. Gunatillake, R. Adhikari, N. Gadegaard, Biodegradable synthetic polymers for tissue engineering, Eur Cell Mater, Vol. 5, No. 1, pp. 1-16, 2003. [DOI:10.22203/eCM.v005a01]
[19] P. A. Gunatillake, R. Adhikari, N. Gadegaard, Biodegradable synthetic polymers for tissue engineering, Eur Cell Mater, Vol. 5, No. 1, pp. 1-16, 2003. [DOI:10.22203/eCM.v005a01]
[20] S. H. Park, D. S. Park, J. W. Shin, Y. G. Kang, H. K. Kim, T. R. Yoon, J.-W. Shin, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA, Journal of Materials Science: Materials in Medicine, Vol. 23, No. 11, pp. 2671-2678, 2012. [DOI:10.1007/s10856-012-4738-8]
[20] S. H. Park, D. S. Park, J. W. Shin, Y. G. Kang, H. K. Kim, T. R. Yoon, J.-W. Shin, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA, Journal of Materials Science: Materials in Medicine, Vol. 23, No. 11, pp. 2671-2678, 2012. [DOI:10.1007/s10856-012-4738-8]
[21] L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick, Scaffold design for bone regeneration, Journal of nanoscience and nanotechnology, Vol. 14, No. 1, pp. 15-56, 2014. [DOI:10.1166/jnn.2014.9127]
[21] L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick, Scaffold design for bone regeneration, Journal of nanoscience and nanotechnology, Vol. 14, No. 1, pp. 15-56, 2014. [DOI:10.1166/jnn.2014.9127]
[22] S. Ramtani, Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation, Journal of biomechanics, Vol. 37, No. 11, pp. 1709-1718, 2004. [DOI:10.1016/j.jbiomech.2004.01.028]
[22] S. Ramtani, Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation, Journal of biomechanics, Vol. 37, No. 11, pp. 1709-1718, 2004. [DOI:10.1016/j.jbiomech.2004.01.028]
[23] A. Faramarzian Haghighi, A. Haerian Ardakani, M. Kafaee Razavi, A. Moloodi, Simulation of mechanical behavior and construction of regular PLA scaffolds, Modares Mechanical Engineering, Vol. 19, No. 8, pp. 1953-1958, 2019.
[23] A. Faramarzian Haghighi, A. Haerian Ardakani, M. Kafaee Razavi, A. Moloodi, Simulation of mechanical behavior and construction of regular PLA scaffolds, Modares Mechanical Engineering, Vol. 19, No. 8, pp. 1953-1958, 2019.
[24] D. ASTM, 695-02a.(2002), Standard Test Methods for Compressive Properties of Rigid Plastics, 10Aug, 2002.
[24] D. ASTM, 695-02a.(2002), Standard Test Methods for Compressive Properties of Rigid Plastics, 10Aug, 2002.
[25] Esposito Corcione, C., et al., Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019. 45(2, Part B): p. 2803-2810. [DOI:10.1016/j.ceramint.2018.07.297]
[25] Esposito Corcione, C., et al., Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019. 45(2, Part B): p. 2803-2810. [DOI:10.1016/j.ceramint.2018.07.297]