مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی تجربی روش کنترلی حلقه باز برای یک ردیاب خورشیدی دومحوره

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه شهید بهشتی
چکیده
امروزه با توجه به گسترش جوامع، پیشرفت روزافزون صنایع و تکنولوژی و همچنین افزایش نیاز جوامع به انرژی، تولید برق از منابع انرژی­ تجدید­پذیر مانند انرژی خورشیدی، که به محیط زیست آسیب نمی­زند و آلودگی اندکی دارد، موردتوجه بسیاری از محققان و مهندسان قرار گرفته­است. در این مقاله، به ارائه طرح جدیدی برای ردیاب خورشیدی دومحوره قطبی، طراحی و ساخت آن در ابعاد آزمایشگاهی و ارزیابی تجربی عملکرد آن به روش کنترل حلقه باز پرداخته می­شود. به این منظور، پس از بررسی مزایا و معایب طرح­های پیشین، طرح مفهومی جدید و متفاوتی برای ردیاب پیشنهاد می­شود. از جمله ویژگی­های ردیاب پیشنهادی می­توان به قابلیت هم­بندی، نصب و بهره­برداری سریع و آسان، خاصیت خودقفل­شوندگی، قابلیت دوران 360 درجه حول هر دو محوراشاره نمود. این ردیاب، محدودیتی برای استفاده در نواحی جغرافیایی مختلف از جمله نواحی نزدیک به قطب شمال یا جنوب و در ساعات ابتدایی و انتهایی روز که راستای تشعشع خورشید به شدت مایل است، ندارد. در ادامه، به طراحی جزئی ردیاب پیشنهادی و ارائه روش کنترلی حلقه­باز پرداخته می­شود. در نهایت، با انجام آزمون­های تجربی، توان تولیدی ردیاب پیشنهادی در مقایسه با صفحه خورشیدی ثابت مورد ارزیابی قرار می­گیرد. بر اساس نتایج حاصل، انرژی الکتریکی تولیدی بدست آمده از ردیاب خورشیدی پیشنهادی 49 درصد بیش­تر از صفحه خورشیدی ثابت است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental evaluation of the open-loop control method for a dual-axis solar tracker

نویسندگان English

Siavash Gitifar
Amir Saman Mirjalili
Ali Jamali
Saeed Pirvalizadeh
Vahid Fakhari
Shahid Beheshti University
چکیده English

These days, societies' need for energy increased due to the expansion of societies, industries, and technology. The production of electricity from renewable energy sources such as solar energy, which does not harm the environment and has little pollution, has attracted the attention of many researchers and engineers. This article will present a new plan for the dual polar axis solar tracker, its design and construction in laboratory dimensions, and the experimental evaluation of its performance using the open-loop control method. For this purpose, after examining the advantages and disadvantages of the previous designs, a new and different conceptual design for the tracker is proposed. Among the features of the proposed tracker, we can point out the ability to combine, install and operate quickly and easily, the self-locking feature, and the ability to rotate 360 ​​degrees around both axes. This tracker has no restrictions for use in different geographical areas, including areas near the North or South Pole and in the early and late hours of the day when the direction of the sun's radiation is strongly inclined. In the following, the detailed design of the proposed detector and the presentation of the open-loop control method will be discussed. Finally, by conducting experimental tests, the production power of the proposed detector is evaluated in comparison with a fixed solar panel. Based on the results, the electricity energy produced from the proposed solar tracker is 49% more than the fixed solar panel.

کلیدواژه‌ها English

Solar tracker
Dual-axis polar tracker
Open-loop control
Self-locking feature
Design and fabrication
Experimental Evaluation
BP Statistical Revie of World Energy 2019 | 68th edition. 2019.
BP Statistical Revie of World Energy 2019 | 68th edition. 2019.
ساتبا، ون. پتانسیل تابش و نقشه تابش خورشید در ایران ۱۳۹۸ [Available from: http://www.satba.gov.ir/br/sun/potential-پتانسیل-تابش-و-نقشه-تابش-خورشید-در-ایران.
ساتبا، ون. پتانسیل تابش و نقشه تابش خورشید در ایران ۱۳۹۸ [Available from: http://www.satba.gov.ir/br/sun/potential-پتانسیل-تابش-و-نقشه-تابش-خورشید-در-ایران.
Alexandru C, editor Dynamic simulation of the adaptive sun tracking system used for an electric unmanned ground vehicle. IOP Conference Series: Materials Science and Engineering; 2019: IOP Publishing. [DOI:10.1088/1757-899X/568/1/012019]
Alexandru C, editor Dynamic simulation of the adaptive sun tracking system used for an electric unmanned ground vehicle. IOP Conference Series: Materials Science and Engineering; 2019: IOP Publishing. [DOI:10.1088/1757-899X/568/1/012019]
Engin M, Engin D. Optimization controller for mechatronic sun tracking system to improve performance. Advances in Mechanical Engineering. 2013;5:146352. [DOI:10.1155/2013/146352]
Engin M, Engin D. Optimization controller for mechatronic sun tracking system to improve performance. Advances in Mechanical Engineering. 2013;5:146352. [DOI:10.1155/2013/146352]
Jadli U, Uniyal S, Uniyal I. Design of a Single-Axis Solar Tracker Using LDRs. Intelligent Communication, Control and Devices: Springer; 2018. p. 1041-9. [DOI:10.1007/978-981-10-5903-2_110]
Jadli U, Uniyal S, Uniyal I. Design of a Single-Axis Solar Tracker Using LDRs. Intelligent Communication, Control and Devices: Springer; 2018. p. 1041-9. [DOI:10.1007/978-981-10-5903-2_110]
Arbab H, Jazi B, Rezagholizadeh M. A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow. Renewable Energy. 2009;34(4):1114-8. [DOI:10.1016/j.renene.2008.06.017]
Arbab H, Jazi B, Rezagholizadeh M. A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow. Renewable Energy. 2009;34(4):1114-8. [DOI:10.1016/j.renene.2008.06.017]
Neville RC. Solar energy collector orientation and tracking mode. Solar energy. 1978;20(1):7-11. [DOI:10.1016/0038-092X(78)90134-2]
Neville RC. Solar energy collector orientation and tracking mode. Solar energy. 1978;20(1):7-11. [DOI:10.1016/0038-092X(78)90134-2]
Song J, Yang Y, Zhu Y, Jin Z. A high precision tracking system based on a hybrid strategy designed for concentrated sunlight transmission via fibers. Renewable energy. 2013;57:12-9. [DOI:10.1016/j.renene.2013.01.022]
Song J, Yang Y, Zhu Y, Jin Z. A high precision tracking system based on a hybrid strategy designed for concentrated sunlight transmission via fibers. Renewable energy. 2013;57:12-9. [DOI:10.1016/j.renene.2013.01.022]
Sungur C. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable energy. 2009;34(4):1119-25. [DOI:10.1016/j.renene.2008.06.020]
Sungur C. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable energy. 2009;34(4):1119-25. [DOI:10.1016/j.renene.2008.06.020]
Blanco-Muriel M, Alarcón-Padilla DC, López-Moratalla T, Lara-Coira M. Computing the solar vector. Solar energy. 2001;70(5):431-41. [DOI:10.1016/S0038-092X(00)00156-0]
Blanco-Muriel M, Alarcón-Padilla DC, López-Moratalla T, Lara-Coira M. Computing the solar vector. Solar energy. 2001;70(5):431-41. [DOI:10.1016/S0038-092X(00)00156-0]
Zhu Y, Liu J, Yang X. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy. 2020;264:114647. [DOI:10.1016/j.apenergy.2020.114647]
Zhu Y, Liu J, Yang X. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy. 2020;264:114647. [DOI:10.1016/j.apenergy.2020.114647]
Batayneh W, Bataineh A, Soliman I, Hafees SA. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction. 2019;98:102-9. [DOI:10.1016/j.autcon.2018.11.011]
Batayneh W, Bataineh A, Soliman I, Hafees SA. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction. 2019;98:102-9. [DOI:10.1016/j.autcon.2018.11.011]
Abdallah S, Nijmeh S. Two axes sun tracking system with PLC control. Energy conversion and management. 2004;45(11-12):1931-9. [DOI:10.1016/j.enconman.2003.10.007]
Abdallah S, Nijmeh S. Two axes sun tracking system with PLC control. Energy conversion and management. 2004;45(11-12):1931-9. [DOI:10.1016/j.enconman.2003.10.007]
Yilmaz S, Ozcalik HR, Dogmus O, Dincer F, Akgol O, Karaaslan M. Design of two axes sun tracking controller with analytically solar radiation calculations. Renewable and Sustainable Energy Reviews. 2015;43:997-1005. [DOI:10.1016/j.rser.2014.11.090]
Yilmaz S, Ozcalik HR, Dogmus O, Dincer F, Akgol O, Karaaslan M. Design of two axes sun tracking controller with analytically solar radiation calculations. Renewable and Sustainable Energy Reviews. 2015;43:997-1005. [DOI:10.1016/j.rser.2014.11.090]
Elmaged A, Kamal H. Passive solar tracking system: UOFK; 2015.
Elmaged A, Kamal H. Passive solar tracking system: UOFK; 2015.
Fathabadi H. Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renewable Energy. 2016;95:485-94. [DOI:10.1016/j.renene.2016.04.063]
Fathabadi H. Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renewable Energy. 2016;95:485-94. [DOI:10.1016/j.renene.2016.04.063]
Fathabadi H. Novel online sensorless Dual-Axis sun tracker. IEEE/ASME transactions on mechatronics. 2016;22(1):321-8. [DOI:10.1109/TMECH.2016.2611564]
Fathabadi H. Novel online sensorless Dual-Axis sun tracker. IEEE/ASME transactions on mechatronics. 2016;22(1):321-8. [DOI:10.1109/TMECH.2016.2611564]
Robles Algarin CA, Ospino Castro AJ, Naranjo Casas J. Dual-axis solar tracker for using in photovoltaic systems. 2017.
Robles Algarin CA, Ospino Castro AJ, Naranjo Casas J. Dual-axis solar tracker for using in photovoltaic systems. 2017.
Smirnov A, Malugin S, Bakanov A, editors. Designing integrated PV facility with dual-axis solar tracking system mounted on the south building face. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM); 2017: IEEE. [DOI:10.1109/ICIEAM.2017.8076254]
Smirnov A, Malugin S, Bakanov A, editors. Designing integrated PV facility with dual-axis solar tracking system mounted on the south building face. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM); 2017: IEEE. [DOI:10.1109/ICIEAM.2017.8076254]
Frankovic D, Kirincic V, Valentic V. A dual-axis tracking photovoltaic power plant as an educational tool. International Journal of Electrical Engineering Education. 2017;54(3):189-207. [DOI:10.1177/0020720916673649]
Frankovic D, Kirincic V, Valentic V. A dual-axis tracking photovoltaic power plant as an educational tool. International Journal of Electrical Engineering Education. 2017;54(3):189-207. [DOI:10.1177/0020720916673649]
Mostafa MTB, Choudhury SMTA, Hosain MS, editors. Design and Performance Analysis of a Dual Axis Solar Tracker. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP); 2019: IEEE. [DOI:10.1109/ICESIP46348.2019.8938338]
Mostafa MTB, Choudhury SMTA, Hosain MS, editors. Design and Performance Analysis of a Dual Axis Solar Tracker. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP); 2019: IEEE. [DOI:10.1109/ICESIP46348.2019.8938338]
Rosma IH AJ, Darmawan S, Anand B, Ali ND, Anto B. The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic. IEEE/ASME transactions on mechatronics. 2018 Oct 16 [DOI:10.1109/ICon-EEI.2018.8784321]
Rosma IH AJ, Darmawan S, Anand B, Ali ND, Anto B. The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic. IEEE/ASME transactions on mechatronics. 2018 Oct 16 [DOI:10.1109/ICon-EEI.2018.8784321]
Yao Y HY, Gao S, Yang G, Du J. . A multipurpose dual-axis solar tracker with two tracking strategies. Renewable Energy. 2014 Dec 1;72:88-98. [DOI:10.1016/j.renene.2014.07.002]
Yao Y HY, Gao S, Yang G, Du J. . A multipurpose dual-axis solar tracker with two tracking strategies. Renewable Energy. 2014 Dec 1;72:88-98. [DOI:10.1016/j.renene.2014.07.002]
Alexandru C. A novel open-loop tracking strategy for photovoltaic systems. The Scientific World Journal. 2013;vol.2013. [DOI:10.1155/2013/205396]
Alexandru C. A novel open-loop tracking strategy for photovoltaic systems. The Scientific World Journal. 2013;vol.2013. [DOI:10.1155/2013/205396]
C A. Simulation of a mechatronic dual-axis tracking system for PV panels. Trans Tech Publications Ltd. 2017;Vol. 859, pp. 81-87. [DOI:10.4028/www.scientific.net/AMM.859.81]
C A. Simulation of a mechatronic dual-axis tracking system for PV panels. Trans Tech Publications Ltd. 2017;Vol. 859, pp. 81-87. [DOI:10.4028/www.scientific.net/AMM.859.81]
Jamroen C KP, Kohsri S, Himananto W, Panupintu S, Unkat S. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments. 2020 Feb 1. [DOI:10.1016/j.seta.2019.100618]
Jamroen C KP, Kohsri S, Himananto W, Panupintu S, Unkat S. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments. 2020 Feb 1. [DOI:10.1016/j.seta.2019.100618]
Vahid Fakhari AM, inventorDual axis solar tracker with Hybrid control and full rotation. Iran2020.
Vahid Fakhari AM, inventorDual axis solar tracker with Hybrid control and full rotation. Iran2020.
Shigley JE MC, Budnyas RG, Nisbett KJ. Shigley'S Mechanical Engineering Design (In Si Units),(Sie)2008.
Shigley JE MC, Budnyas RG, Nisbett KJ. Shigley'S Mechanical Engineering Design (In Si Units),(Sie)2008.
RC J. Fundamentals of machine component design.
RC J. Fundamentals of machine component design.
https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html.
https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html.
Sen Z. Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy: Springer Science & Business Media; 2008.
Sen Z. Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy: Springer Science & Business Media; 2008.