مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی خواص مکانیکی و ریز ساختار فولاد AISI4130 بعد از فرآیند فلو فرمینگ معکوس لوله

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تهران
چکیده
‌‌فلوفرمینگ، یکی از روش‌های پیشرفته برای تولید قطعات استوانه‌ای با ضخامت کم می‌باشد. دقت ابعادی لوله‌های تولید شده با روش فلوفرمینگ نسبت به سایر روش‌ها بسیار بالاتر بوده و این روش کاربرد فراوانی در صنایع هوافضا دارد. در این پژوهش اثر تعداد پاس فرآیند فلوفرمینگ بر روی خواص مکانیکی و دانه بندی ساختار فولاد AISI4130 مورد بررسی قرار گرفته است. سه مرحله کاهش ضخامت با موفقیت انجام شده و در مرحله چهارم، لوله دچار پارگی شد. در مرحله اول این فرآیند ضخامت فولاد مورد نظر از مقدار 2/14 میلیمتر به 3/9 میلیمتر تغییر یافته است. در مرحله دوم ضخامت به 2/6 میلیمتر و در مرحله سوم به ضخامت 3/2 میلیمتر رسیده است و در مرحله چهارم با رسیدن به ضخامت 8/1 میلیمتر، در لوله پار­گی به وجود آمده است. نتایج نشان دادکه با استفاده از فرآیند فلوفرمینگ حداکثر مقدار 5/84 درصد کاهش ضخامت قابل دستیابی است. برای دستیابی به درصد کاهش ضخامت بیشتر لازم است لوله فلوفرم شده، مجددا عملیات حرارتی آنیل شود. برای بررسی خواص مکانیکی، آزمون کشش در دو جهت طولی و محیطی انجام شده است. با توجه به نتایج بدست آمده مشخص گردید که عملیات فلوفرمینگ ، بر روی این فولاد، در هر مرحله موجب افزایش سختی و افزایش استحکام تسلیم و نهایی ماده اولیه شده است. همچنین کار سختی انجام شده در هر مرحله بر روی این فولاد با حفظ ساختار پرلیتی فریتی، موجب ریزتر شدن ساختار دانه‌بندی و کشیدگی دانه ها شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mechanical and microstructural properties evaluation of AISI4130 steel after backward flow forming process

نویسندگان English

Vahid soleimani
Ghader Faraji
University of Tehran
چکیده English

Flow forming is one of the advanced methods for producing low thickness cylindrical parts. The dimensional accuracy of pipes produced by the flow forming method is much higher than other methods and this method is widely used in the aerospace industry. In this research, the effect of number flow forming passes has been investigated on the mechanical properties and microstructure of AISI4130 steel. Three stages of thickness reduction have been successfully completed and in the fourth stage, the tube was fractured. In the first stage of this pass, the desired steel thickness has changed from 14.2 mm to 9.3 mm. In the second stage, the thickness reached 2.6 mm, in the third stage to a thickness of 2.3 mm and in the fourth stage by reaching 1.8 mm thick, there has been a tear in the pipe. During the flow forming process, the maximum amount of 84.5% thickness reduction can be achieved. To achieve a higher percentage of thickness reduction, it is necessary to re-anneal the flow formed sample. To investigate the tensile properties, tensile tests have been done through both longitudinal and circumferential directions. According to the results, it was found that the flow forming operation on this steel has increased the hardness and yield, and ultimate strength of the material at every stage. Also, the hard work done at every stage on this steel by maintaining the ferritic pearlite-ferritic structure has caused finer grain structure and elongation of the grains.

کلیدواژه‌ها English

Cold Hardening
Flow Forming
Mechanical properties
Microstructure
Thickness reduction
[1] G. Venkateshwarlu, K R. kumar, T.A.J. Reddy, G. Gopi, Study on the mechanism of force calculations in flow forming, A Review, International Journal of Advanced Research in Engineering and Technology (IJARET), 2013, PP194-201.
[1] G. Venkateshwarlu, K R. kumar, T.A.J. Reddy, G. Gopi, Study on the mechanism of force calculations in flow forming, A Review, International Journal of Advanced Research in Engineering and Technology (IJARET), 2013, PP194-201.
[2] S. Kalpakjian, S. Rajgopal, Spinning of tubes, A Review, J. Appl. Met, Working , 1982,Vol.2,PP 211-223 [DOI:10.1007/BF02834039]
[2] S. Kalpakjian, S. Rajgopal, Spinning of tubes, A Review, J. Appl. Met, Working , 1982,Vol.2,PP 211-223 [DOI:10.1007/BF02834039]
[3] M. Ebrahimi, K. H. Tabei, R. Naseri and F. Djavanroodi, Effect of flow-forming parameters on surface quality, geometrical precision and mechanical properties of titanium tube, Proc IMechE Part E, Journal of Process Mechanical Engineering, 2017, PP1-7. [DOI:10.1177/0954408917738126]
[3] M. Ebrahimi, K. H. Tabei, R. Naseri and F. Djavanroodi, Effect of flow-forming parameters on surface quality, geometrical precision and mechanical properties of titanium tube, Proc IMechE Part E, Journal of Process Mechanical Engineering, 2017, PP1-7. [DOI:10.1177/0954408917738126]
[4] O. I. Bylyaa, T. Khismatullina, P. Blackwellb and R.A. Vasin, The Effect of Elasto-Plastic Properties of Materials on their formability by flow forming, Journal of Materials Processing Technology, 2018,Vol252, PP34-44. [DOI:10.1016/j.jmatprotec.2017.09.007]
[4] O. I. Bylyaa, T. Khismatullina, P. Blackwellb and R.A. Vasin, The Effect of Elasto-Plastic Properties of Materials on their formability by flow forming, Journal of Materials Processing Technology, 2018,Vol252, PP34-44. [DOI:10.1016/j.jmatprotec.2017.09.007]
[5] S. Kalpackcioglu, Maximum reduction in power spinning of tube, trans. ASME, Journal, Engineering, Industrial, 1964, Vol.86,PP49-54. [DOI:10.1115/1.3670450]
[5] S. Kalpackcioglu, Maximum reduction in power spinning of tube, trans. ASME, Journal, Engineering, Industrial, 1964, Vol.86,PP49-54. [DOI:10.1115/1.3670450]
[6] K. M. Rajan, K. Narasimhan, An investigation of the development of defects during flow forming of high strength thin wall steel tubes, ASM J. Pract. failure anal. , 2001,Vol.1,PP 69-76. [DOI:10.1007/BF02715366]
[6] K. M. Rajan, K. Narasimhan, An investigation of the development of defects during flow forming of high strength thin wall steel tubes, ASM J. Pract. failure anal. , 2001,Vol.1,PP 69-76. [DOI:10.1007/BF02715366]
[7] S.C Chang, C. A. Huang, Y. Yus, Tubes pinnability of AA 2024 and 7075 aluminum alloy, Journal of Materials Processing Technology, 1998,Vol.80-81, PP676-682. [DOI:10.1016/S0924-0136(98)00174-5]
[7] S.C Chang, C. A. Huang, Y. Yus, Tubes pinnability of AA 2024 and 7075 aluminum alloy, Journal of Materials Processing Technology, 1998,Vol.80-81, PP676-682. [DOI:10.1016/S0924-0136(98)00174-5]
[8] S. C. Chang, C. C.Wang, C. A. Huang, Fabrication of 2024 Aluminum spun tube using athomo-mechanical treatment process, Journal of Materials Processing Technology, 2001,Vol.108, PP294-299. [DOI:10.1016/S0924-0136(00)00840-2]
[8] S. C. Chang, C. C.Wang, C. A. Huang, Fabrication of 2024 Aluminum spun tube using athomo-mechanical treatment process, Journal of Materials Processing Technology, 2001,Vol.108, PP294-299. [DOI:10.1016/S0924-0136(00)00840-2]
[9] X. W.Chen, D.Shan, WANG Zhen-long, Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy,Transactions of Nonferrous Metals Society of China, 2007,Vol.17,PP1205-1211 [DOI:10.1016/S1003-6326(07)60250-7]
[9] X. W.Chen, D.Shan, WANG Zhen-long, Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy,Transactions of Nonferrous Metals Society of China, 2007,Vol.17,PP1205-1211 [DOI:10.1016/S1003-6326(07)60250-7]
[10] K.M.Rajan, P.U. Deshpande , K. Narasimhan , Effect of heat treatment of perform on the mechanical properties of flow formed AISI 4130 Steel Tube-A theoretical and experimental assessment, Journal of Materials Processing Technology , 2002,Vol 125-126,PP503-511. [DOI:10.1016/S0924-0136(02)00305-9]
[10] K.M.Rajan, P.U. Deshpande , K. Narasimhan , Effect of heat treatment of perform on the mechanical properties of flow formed AISI 4130 Steel Tube-A theoretical and experimental assessment, Journal of Materials Processing Technology , 2002,Vol 125-126,PP503-511. [DOI:10.1016/S0924-0136(02)00305-9]
[11] Z. Cao, F. Wang, Q. Wan, Z.Zhang, L. Jin, J. Dong, Microstructure and mechanical properties of AZ80 magnesium alloy tube fabricated by hot flow forming, Materials & Design, 2015,Vol.67,PP 67-71. [DOI:10.1016/j.matdes.2014.11.016]
[11] Z. Cao, F. Wang, Q. Wan, Z.Zhang, L. Jin, J. Dong, Microstructure and mechanical properties of AZ80 magnesium alloy tube fabricated by hot flow forming, Materials & Design, 2015,Vol.67,PP 67-71. [DOI:10.1016/j.matdes.2014.11.016]
[12] R. Jafari, M. Farzin, The effect of preform thickness changes on the thickness of the final parts in multi-roll flow forming, Amirkabir Journal Of Mechanical Engineering, 2012, Vol.2,PP103-112.
[12] R. Jafari, M. Farzin, The effect of preform thickness changes on the thickness of the final parts in multi-roll flow forming, Amirkabir Journal Of Mechanical Engineering, 2012, Vol.2,PP103-112.
[13] H. R. Molladavoudi, F. Djavanroodi, Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-o during flow forming, The International Journal of Advanced Manufacturing Technology, 2011,Vol.52,PP 949-955. [DOI:10.1007/s00170-010-2782-4]
[13] H. R. Molladavoudi, F. Djavanroodi, Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-o during flow forming, The International Journal of Advanced Manufacturing Technology, 2011,Vol.52,PP 949-955. [DOI:10.1007/s00170-010-2782-4]
[14] R. Jafari, M. Farzin, The influence of roller force imbalance on product thickness accuracy in multi-roller flow forming, Imam Hossein University Journal Of Mechanical,Aerospace Engineering, 2012, Vol.7,PP123-142
[14] R. Jafari, M. Farzin, The influence of roller force imbalance on product thickness accuracy in multi-roller flow forming, Imam Hossein University Journal Of Mechanical,Aerospace Engineering, 2012, Vol.7,PP123-142
[15] M.Boozarpoor, M. Elyasi and M. Hosseinzadeh, An investigation of the surface quality of burnished AISI 4340 steel, Journal of Process Mechanical Engineering, 2017, [DOI:10.1177/0954408917694215]
[15] M.Boozarpoor, M. Elyasi and M. Hosseinzadeh, An investigation of the surface quality of burnished AISI 4340 steel, Journal of Process Mechanical Engineering, 2017, [DOI:10.1177/0954408917694215]
[16] M. S. Mohebbi, A. Akbarzadeh, Experimental study and FEM analysis of redundant strains in flow forming of tubes, Journal of Materials Processing Technology, 2010,Vol.210,PP389-395. [DOI:10.1016/j.jmatprotec.2009.09.028]
[16] M. S. Mohebbi, A. Akbarzadeh, Experimental study and FEM analysis of redundant strains in flow forming of tubes, Journal of Materials Processing Technology, 2010,Vol.210,PP389-395. [DOI:10.1016/j.jmatprotec.2009.09.028]
[17] M. Haghshenas, R. J. Klassen, Mechanical characterization of flow formed FCC alloys, Materials Science and Engineering:A, 2015,Vol.641,PP 249-255. [DOI:10.1016/j.msea.2015.06.046]
[17] M. Haghshenas, R. J. Klassen, Mechanical characterization of flow formed FCC alloys, Materials Science and Engineering:A, 2015,Vol.641,PP 249-255. [DOI:10.1016/j.msea.2015.06.046]
[18] B.C. Vriens, M. Haghshenas, R.J. Klassen, Investigation of the effect of roller inclination angle on the forming forces during & splined mandrel flow forming operation, Journal of Manufacturing Processes, 2014,Vol.19,PP183-186 [DOI:10.1016/j.jmapro.2014.07.003]
[18] B.C. Vriens, M. Haghshenas, R.J. Klassen, Investigation of the effect of roller inclination angle on the forming forces during & splined mandrel flow forming operation, Journal of Manufacturing Processes, 2014,Vol.19,PP183-186 [DOI:10.1016/j.jmapro.2014.07.003]
[19] M. Sivanandini, S.S.Dhami, B.S.Pabla, Flow forming of tubes-a review, International Journal of Scientific & Engineering Research, 2012,Vol.3,PP 1-11.
[19] M. Sivanandini, S.S.Dhami, B.S.Pabla, Flow forming of tubes-a review, International Journal of Scientific & Engineering Research, 2012,Vol.3,PP 1-11.
[20] B. Gun , I. Guveli, Rifling by flow forming, Macdor machine industry and trade Co. Ltd, Approved patent Application, TPE 2007-G-173863.
[20] B. Gun , I. Guveli, Rifling by flow forming, Macdor machine industry and trade Co. Ltd, Approved patent Application, TPE 2007-G-173863.
[21] M.R. Vaziri, M. Salimi, M. Mashayekhi, Mathematical Form of the Structural Model of the Material that can be used in the analysis of the Plastic Behavior of Metals in Machining Modeling, Quartely Journal of Modeling in Engineering ,Vol. 10, No. 31,pp. 37-48, 2010. (in Persianفارسی )
[21] M.R. Vaziri, M. Salimi, M. Mashayekhi, Mathematical Form of the Structural Model of the Material that can be used in the analysis of the Plastic Behavior of Metals in Machining Modeling, Quartely Journal of Modeling in Engineering ,Vol. 10, No. 31,pp. 37-48, 2010. (in Persianفارسی )
[22] N. A. Razani, A. J. Aghchai and B. M. Dariani, Flow-forming optimization based on hardness of flow-formed AISI321 tube using response surface method, The international Journal of Advanced Manufacturing Technology, 2014, Vol.70,PP1463-1471. [DOI:10.1007/s00170-013-5377-z]
[22] N. A. Razani, A. J. Aghchai and B. M. Dariani, Flow-forming optimization based on hardness of flow-formed AISI321 tube using response surface method, The international Journal of Advanced Manufacturing Technology, 2014, Vol.70,PP1463-1471. [DOI:10.1007/s00170-013-5377-z]