مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی رفتار ترمومکانیکی سوپرآلیاژ نسل جدید پایه کبالت نیکل Co-Ni-Al-Cr-W-Ti-Ta-Nb-Mo-C-B (%wt) با استفاده از معادلات بنیادی و نقشه فرایند تغییر شکل

نوع مقاله : پژوهشی اصیل

نویسندگان
مجتمع دانشگاهی مواد و فناوری های ساخت، دانشگاه صنعتی مالک اشتر تهران
چکیده
هدف از پژوهش حاضر، بررسی رفتار کار داغ سوپرآلیاژ پایه کبالت نیکل نسل جدید با ترکیب شیمیایی Co-22.8Ni-3.4Al-8Cr-17.1W-1.5Ti-2.8Ta-1.5Nb-1.5Mo-0.06C-0.02B(%wt) به واسطه انجام آزمایش فشار، ارائه معادله بنیادی و نقشه فرایند تغییر شکل و تعیین مناطق امن و نا امن تغییر شکل است. در این راستا آزمایش فشار داغ در محدوده دمایی1200-1050 درجه سانتیگراد، با گام50 درجه سانتیگراد و نرخ‌های کرنش 1/0 ، 01/0 و 001/0 بر ثانیه تا کرنش 7/0 انجام شد. ارزیابی معادلات بنیادی حاکم بر فرایند تغییر شکل داغ سوپرآلیاژ، نشان داد که مدل ارائه شده براساس معادله سینوس هایپربولیک، نتایج تجربی را با دقت قابل قبولی پیش‌بینی می‌نماید. با استفاده از معادله اشاره شده، انرژی فعال‌سازی تغییر شکل داغ آلیاژ مورد بررسی در پژوهش حاضر، 497 کیلو ژول بر مول بدست آمد. بر اساس نقشه فرآیند ترسیم شده برای آلیاژ مورد بررسی در پژوهش حاضر در کرنش 4/0، یک منطقه ناپایداری در دمای 1050 درجه سانتیگراد و نرخ کرنش 01/0 بر ثانیه مشاهده شد. این درحالی است ‌که با افزایش دمای تغییرشکل، گستره و شدت منطقه ناپایداری کاهش یافت. با توجه به نتایج حاصل از نقشه فرایند و معادلات بنیادی، شرایط بهینه تغییر شکل آلیاژ مورد بررسی در محدوده دمایی 1150 درجه سانتیگراد تا 1200 درجه سانتیگراد و نرخ کرنش 1/0 برثانیه و محدوده دمایی 1100 درجه سانتیگراد تا 1200 درجه سانتیگراد و نرخ کرنش‌های 01/0 بر ثانیه تا 001/0 بر ثانیه با حداکثر بازده مصرف انرژی 45 درصد تعیین شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the thermomechanical behavior of the new generation nickel-cobalt Co-Ni-Al-Cr-W-Ti-Ta-Nb-Mo-C-B (%wt) superalloy Using constitutive equations and deformation processing maps

نویسندگان English

Maryam Morakabati
mohammad javad karimian
hassan badri
Faculty of materials and manu facturing Technologies, Malek Ashtar university of Technology
چکیده English

The purpose of this research is to investigate the hot working behavior of the cobalt-nickel base superalloy with the chemical composition of Co-22.8Ni-3.4Al-8Cr-17.1W-1.5Ti-2.8Ta-1.5Nb-1.5Mo-0.06C-0.02B (%wt) by performing compression test, providing the constitutive equation and deformation procssing map and determining the safe and unsafe regions of deformation. In this regard, the hot compression test was performed in the temperature range of 1050-1200 degrees Celsius, with a step of 50 degrees Celsius and strain rates of 0.1, 0.01 and 0.001/s up to a strain of 0.7. The evaluation of the constitutive equations governing the hot deformation process of the superalloy showed that the presented model based on the hyperbolic sine equation predicts the experimental results with acceptable accuracy. Using the mentioned equation, the hot deformation activation energy of the investigated alloy in the present study was obtained as 497 kJ/mol. Based on the process in map drawn for the investigated alloy in the present study, at a strain of 0.4, an instability region was observed at a temperature of 1050 degrees Celsius and a strain rate of 0.01 1/s. the extent and intensity of instability region decreased with the increase in deformation temperature. According to the results of the processing map and the constitutive equations, the optimal conditions of deformation of the investigated alloy are in the temperature range of 1150 to 1200 and the strain rate of 0.1 1/s and the temperature range of 1100 to 1200 and the strain rate of 0.1 to 0.001 the peak efficiency of 45% energy consumption.

کلیدواژه‌ها English

new generation cobalt-nickel base superalloy
Hot compression test
Constitutive equations
deformation processing map
1) P.J. Bocchini, "Microstructure and Mechanical Properties in Gamma (face-centered cubic)+ Gamma Prime Precipitation-Strengthened Cobalt-based Superalloys." PhD thesis, Northwestern University, 2015.
1) P.J. Bocchini, "Microstructure and Mechanical Properties in Gamma (face-centered cubic)+ Gamma Prime Precipitation-Strengthened Cobalt-based Superalloys." PhD thesis, Northwestern University, 2015.
2) Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, and J. Fujioka. "New Ni-Co base disk superalloys with higher strength and creep resistance." Scripta materialia 55, 2006, vol.9, pp.815-818. [DOI:10.1016/j.scriptamat.2006.07.008]
2) Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, and J. Fujioka. "New Ni-Co base disk superalloys with higher strength and creep resistance." Scripta materialia 55, 2006, vol.9, pp.815-818. [DOI:10.1016/j.scriptamat.2006.07.008]
3) Xiaokang Zhong, Fusheng Han. "Hot deformation behavior of a new tailored cobalt-based super alloy for turbine discs." Journal of Alloys and Compounds, 2019, vol.599, pp.159-163.
3) Xiaokang Zhong, Fusheng Han. "Hot deformation behavior of a new tailored cobalt-based super alloy for turbine discs." Journal of Alloys and Compounds, 2019, vol.599, pp.159-163.
4) Y. Li, Z. Hong, B. Liu, X. Jia, "Investigation of microstructure evolution and mechanical properties of multiprecipitation Co-Ni base superalloys", Materials Science & Engineering A,
https://doi.org/10.1016/j.msea.2020.140333 [DOI:10.1016/j.msea.2020.140333., A, vol. 550, pp 333-341, 2021.]
4) Y. Li, Z. Hong, B. Liu, X. Jia, "Investigation of microstructure evolution and mechanical properties of multiprecipitation Co-Ni base superalloys", Materials Science & Engineering A,
https://doi.org/10.1016/j.msea.2020.140333 [DOI:10.1016/j.msea.2020.140333., A, vol. 550, pp 333-341, 2021.]
5) R. Kainuma, M. Ise, C.-C. Jia, H. Ohtani and K. Ishida: Intermetallics 4 (1996) S151-S158. [DOI:10.1016/0966-9795(96)00034-9]
5) R. Kainuma, M. Ise, C.-C. Jia, H. Ohtani and K. Ishida: Intermetallics 4 (1996) S151-S158. [DOI:10.1016/0966-9795(96)00034-9]
6) M.Kolb, L.P.Freund, F.Fischer, I.Povstugar, S.K.Makineni, B.Gault, D.Raabe, J.Müller "On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys" Journal of Acta Materialia, Volume 145, Pages 247-254, 15 February 2018. [DOI:10.1016/j.actamat.2017.12.020]
6) M.Kolb, L.P.Freund, F.Fischer, I.Povstugar, S.K.Makineni, B.Gault, D.Raabe, J.Müller "On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys" Journal of Acta Materialia, Volume 145, Pages 247-254, 15 February 2018. [DOI:10.1016/j.actamat.2017.12.020]
7) A. Suzuki and T. M. Pollock, High-temperature strength and deformation of A. Suzuki and T. M. Pollock, High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys vol. 56, 2008 two-phase Co-Al-W-base alloys vol. 56, 2008. [DOI:10.1016/j.actamat.2007.11.014]
7) A. Suzuki and T. M. Pollock, High-temperature strength and deformation of A. Suzuki and T. M. Pollock, High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys vol. 56, 2008 two-phase Co-Al-W-base alloys vol. 56, 2008. [DOI:10.1016/j.actamat.2007.11.014]
8) Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, et al., "Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242," Metallurgical Transactions A, vol. 15, pp. 1883-1892, 1984. [DOI:10.1007/BF02664902]
8) Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, et al., "Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242," Metallurgical Transactions A, vol. 15, pp. 1883-1892, 1984. [DOI:10.1007/BF02664902]
9) T. M. Pollock ,J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, "New Co-based γ/γ′ high-temperature alloys," JOM, vol. 62, pp. 58-63, 2010. [DOI:10.1007/s11837-010-0013-y]
9) T. M. Pollock ,J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, "New Co-based γ/γ′ high-temperature alloys," JOM, vol. 62, pp. 58-63, 2010. [DOI:10.1007/s11837-010-0013-y]
10) R. Ebrahimi and A. Najafizadeh, "A new method for evaluation of friction in bulk metal forming," Journal of Materials Processing Technology, vol. 152, pp. 136-143, 2004. [DOI:10.1016/j.jmatprotec.2004.03.029]
10) R. Ebrahimi and A. Najafizadeh, "A new method for evaluation of friction in bulk metal forming," Journal of Materials Processing Technology, vol. 152, pp. 136-143, 2004. [DOI:10.1016/j.jmatprotec.2004.03.029]
11) Y. V. R. K. Prasad and S. Sasidhara, "Hot Working Guide: A Compendium of Processing Maps," ASM International, 1997.
11) Y. V. R. K. Prasad and S. Sasidhara, "Hot Working Guide: A Compendium of Processing Maps," ASM International, 1997.
12) A. Momeni and K. Dehghani, "Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps," Materials Science and Engineering: A, vol. 527, pp. 5467-5473, 2010. [DOI:10.1016/j.msea.2010.05.079]
12) A. Momeni and K. Dehghani, "Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps," Materials Science and Engineering: A, vol. 527, pp. 5467-5473, 2010. [DOI:10.1016/j.msea.2010.05.079]
13) Y. V. R. K. Prasad and T. Seshacharyulu, "Processing maps for hot working of titanium alloys," Materials Science and Engineering: A, vol. 243, pp. 82-88, 1998. [DOI:10.1016/S0921-5093(97)00782-X]
13) Y. V. R. K. Prasad and T. Seshacharyulu, "Processing maps for hot working of titanium alloys," Materials Science and Engineering: A, vol. 243, pp. 82-88, 1998. [DOI:10.1016/S0921-5093(97)00782-X]
14) R. Kainuma, M. Ise, C. C. Jia, H. Ohtani, and K. Ishida, "Phase equilibria and microstructural control in the Ni-Co-Al system," Intermetallics, vol. 4, pp. S151-S158, 1996. [DOI:10.1016/0966-9795(96)00034-9]
14) R. Kainuma, M. Ise, C. C. Jia, H. Ohtani, and K. Ishida, "Phase equilibria and microstructural control in the Ni-Co-Al system," Intermetallics, vol. 4, pp. S151-S158, 1996. [DOI:10.1016/0966-9795(96)00034-9]
15) S. Neumeier, L.P. Freund, M. Göken, Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance, Scripta mater 109 (2015) 104-107
https://doi.org/10.1016/j.scriptamat.2015.07.030 [DOI:10.1016/j.scriptamat.2015.07.030.]
15) S. Neumeier, L.P. Freund, M. Göken, Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance, Scripta mater 109 (2015) 104-107
https://doi.org/10.1016/j.scriptamat.2015.07.030 [DOI:10.1016/j.scriptamat.2015.07.030.]
16) E.T. McDevitt, Vacuum induction melting and vacuum arc remelting of Co-Al-WX gamma-prime superalloys, MATEC Web of Conferences ,201402001https://doi. org/10.1051/matecconf/20141402001.
16) E.T. McDevitt, Vacuum induction melting and vacuum arc remelting of Co-Al-WX gamma-prime superalloys, MATEC Web of Conferences ,201402001https://doi. org/10.1051/matecconf/20141402001.
17) S.L. Semiatin, D.S. Weaver, R.C. Kramb, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, M.M. Antony, Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material, Metall. Mater. Trans. A 35 (2) (2004) 679-693
https://doi.org/10.1007/s11661-004-0379-y [DOI:10.1007/s11661-004-0379-y.]
17) S.L. Semiatin, D.S. Weaver, R.C. Kramb, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, M.M. Antony, Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material, Metall. Mater. Trans. A 35 (2) (2004) 679-693
https://doi.org/10.1007/s11661-004-0379-y [DOI:10.1007/s11661-004-0379-y.]
18) Zhu J., Titus M., Pollock T., Experimental investigation and thermodynamic modeling of the corich region in the Co-Al-Ni-W quaternary system, Journal of Phase Equilibria and Diffusion, 2014, 35(5)595-611. [DOI:10.1007/s11669-014-0327-5]
18) Zhu J., Titus M., Pollock T., Experimental investigation and thermodynamic modeling of the corich region in the Co-Al-Ni-W quaternary system, Journal of Phase Equilibria and Diffusion, 2014, 35(5)595-611. [DOI:10.1007/s11669-014-0327-5]
19) Taheri-Mandarjani, M., Zarei-Hanzaki, A., and Abedi., H. R., "Hot Ductility Behavior of An Extruded 7075 Aluminum Alloy," Materials Science and Engineering: A, Vol. 637, pp. 107-122, 2015. [DOI:10.1016/j.msea.2015.03.038]
19) Taheri-Mandarjani, M., Zarei-Hanzaki, A., and Abedi., H. R., "Hot Ductility Behavior of An Extruded 7075 Aluminum Alloy," Materials Science and Engineering: A, Vol. 637, pp. 107-122, 2015. [DOI:10.1016/j.msea.2015.03.038]