مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی فشار ترکیدگی استوانه دولایه‌ی متداخل اتوفرتاژ شده با وجود ترک در سطح داخلی، بر اساس انتگرال J

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه بوعلی سینا
چکیده
مخازن استوانه­ای جدار ضخیم در صنایع نفت، شیمیایی، هسته­­ای و نظامی به منظور تحمل فشارهای داخلی کاربرد ویژه­ای دارند. وجود تنش پسماند فشاری در جداره­ی مخازن جدار ضخیم موجب افزایش فشار ترکیدگی و عمر خستگی آن می­گردد. فرآیندهای اتوفرتاژ و تداخل شعاعی در استوانه­ی چندلایه­ از روش­های مرسوم ایجاد تنش پسماند در جداره­ی مخازن می­باشند. به منظور دستیابی به استحکام و عمر خستگی بالاتر، از ترکیب این دو فرآیند نیز استفاده می­شود. انتگرال J معیار مناسبی جهت ارزیابی رشد ترک در میدان­های کرنش الاستیک و الاستوپلاستیک می­باشد. در این پژوهش با استفاده از روش اجزای محدود، توزیع انتگرال J در طول پیشانی ترک نیم بیضی در سطح داخلی استوانه­ی دولایه­ی متداخل که انتهای آن بسته بوده و لایه داخلی آن اتوفرتاژ گردیده، محاسبه و سپس فشار ترکیدگی بر مبنای معیار چقرمگی شکست ماده، JΙC تعیین شده است. همچنین تاثیر پارامترهای مقدار اتوفرتاژ، تداخل شعاعی، عمق، زاویه و شکل ترک بر توزیع انتگرال­ J و فشار ترکیدگی بررسی گردیده است. لایه­های داخلی و خارجی استوانه­ی دو لایه از جنس آلیاژ آلومینیوم 7075 گرید 6T در نظر گرفته شده است. رفتار سخت ­شوند­گی غیر خطی دوره­ای این آلیاژ با استفاده از مدل چابوچه، پیش بینی گردیده است. اعتبار پژوهش بررسی و دقت بالای نتایج، اثبات گردید
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the bursting pressure of the autofrettaged and interferenced double-layered cylinder with a crack on the inner surface, based on the J-integral

نویسندگان English

Mohammad Sajjad Khodayari
Rahman Seifi
Bu-Ali Sina University
چکیده English

Thick-walled cylindrical vessels are specially used in oil, chemical, nuclear and military industries in order to withstand internal pressure. The presence of the compressive residual stress in the walls increases the bursting pressure and fatigue life. Autofrettage processes and radial interference in multilayer cylinders are among the conventional methods of creating residual stresses in the pressure vessels. In order to achieve higher strength and fatigue life, the combination of these processes is also considered. J integral method is a suitable criterion for evaluating the crack parameters in elastic and elastoplastic strain fields. In this research, distribution of the J integral along the semi-elliptical crack front on the inner surface of the interferenced two-layered cylinder with closed end has been studied. Inner layer was autofrettaged. Burst pressure was determined based on the fracture toughness criterion (JΙC). Also, the effects of the autofrettage percent, radial interference; depth, angle and aspect ratio of the crack on the J integral and burst pressure variations have been investigated. The inner and outer layers of the cylinder were made of 7075-T6 aluminum alloy. The periodic nonlinear hardening behavior of this alloy has been predicted using Chabooche model. The validity of the results and their accuracy were examined

کلیدواژه‌ها English

J integral
Burst pressure
Finite Elements Method
Semi-elliptical crack
Autofrettage
radial interference
1. Jahromi, B.H., et al., Residual stresses in autofrettaged vessel made of functionally graded material. Engineering Structures, 2009. 31(12): p. 2930-2935.
2. Fällgren, C., et al., Autofrettage of high-pressure components made of ultra-high-strength-steel. Procedia Structural Integrity, 2022. 37: p. 948-955.
3. Seifi, R. and M. Babalhavaeji, Bursting pressure of autofrettaged cylinders with inclined external cracks. International journal of pressure vessels and piping, 2012. 89: p. 112-119.
4. Shufen, R. and U.S. Dixit, Effect of length in rotational autofrettage of long cylinders with free ends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022. 236(6): p. 2981-2994.
5. Hu, Z. and A.P. Parker, Implementation and validation of true material constitutive model for accurate modeling of thick-walled cylinder swage autofrettage. International Journal of Pressure Vessels and Piping, 2021. 191: p. 104378.
6. Hu, Z., M.C. Gibson, and A.P. Parker, Swage autofrettage FEA incorporating a user function to model actual Bauschinger effect. International Journal of Pressure Vessels and Piping, 2021. 191: p. 104372.
7. Molaie, M., et al., Autofrettage of nonlinear strain-hardening cylinders using the proposed analytical solution for stresses. International Journal of Mechanical Sciences, 2018. 141: p. 450-460.
8. GHAJAR, R.A. and G.H. SAEIDI, Investigation of pressure gradient effect on stress intensity factor variations in autofrettaged cracked thick-walled tubes using two dimensional weight function method. 2014.
9. Seifi, R. and H. Hakimi, Evaluation of fatigue crack growth due to bending on the autofrettaged cylinders with external crack. Modares Mechanical Engineering, 2017. 16(11): p. 35-44.
10. Seifi, R., A.H. Mahmoudi, and M. Babalhavaeji, J-integral and CMOD for external inclined cracks on autofrettaged cylinders. International journal of fracture, 2011. 169(2): p. 199-212.
11. Lin, X. and R. Smith, Stress intensity factors for semi-elliptical internal surface cracks in autofrettaged thick-walled cylinders. The Journal of Strain Analysis for Engineering Design, 1997. 32(5): p. 351-363.
12. Perl, M. and T. Saley, Swage and hydraulic autofrettage impact on fracture endurance and fatigue life of an internally cracked smooth gun barrel Part I–The effect of overstraining. Engineering Fracture Mechanics, 2017. 182: p. 372-385.
13. Perl, M. and T. Saley, Swage and hydraulic autofrettage impact on fracture endurance and fatigue life of an internally cracked smooth gun barrel Part II–The combined effect of pressure and overstraining. Engineering Fracture Mechanics, 2017. 182: p. 386-399.
14. Sunil, A.P., Finite element analysis of optimized compound cylinder. Journal of mechanical engineering research, 2013. 5(5): p. 90-96.
15. Gamer, U. and R. Lance, Residual stress in shrink fits. International Journal of Mechanical Sciences, 1983. 25(7): p. 465-470.
16. Alexandrov, S., E. Lyamina, and Y.-R. Jeng, A semi-analytic method for elastic/plastic shrink-fit analysis and design. The Journal of Strain Analysis for Engineering Design, 2015. 50(4): p. 243-251.
17. Farrahi, G., et al., Residual stress analyses of re-autofrettaged thick-walled tubes. International Journal of Pressure Vessels and Piping, 2012. 98: p. 57-64.
18. Seifi, R., Maximizing working pressure of autofrettaged three layer compound cylinders with considering Bauschinger effect and reverse yielding. Meccanica, 2018. 53(10): p. 2485-2501.
19. Hu, C., et al., An alternative design method for the double-layer combined die using autofrettage theory. Mechanical Sciences, 2017. 8(2): p. 267-276.
20. Jahed, H., B. Farshi, and M. Karimi, Optimum autofrettage and shrink-fit combination in multi-layer cylinders. 2006.
21. Abdelsalam, O.R. and R. Sedaghati, Design optimization of compound cylinders subjected to autofrettage and shrink-fitting processes. Journal of Pressure Vessel Technology, 2013. 135(2).
22. Mohan, A. and J. Jaisingh, Fatigue analysis of thermal shrink-fit autofrettage in pressure cylinder using finite element analysis. Journal of Materials Research and Technology, 2020. 9(4): p. 8606-8617.
23. Majzoobi, G. and A. Ghomi, Optimisation of compound pressure cylinders. Journal of Achievements in Materials and Manufacturing Engineering, 2006. 15(1-2): p. 135-145.
24. Mouâa, A., N.E. Laghzale, and A.-H. Bouzid. Elastic-plastic stresses in shrink fit with a solid shaft. in MATEC Web of Conferences. 2019. EDP Sciences.
25. Lei, Y., J-integral evaluation for cases involving non-proportional stressing. Engineering Fracture Mechanics, 2005. 72(4): p. 577-596.
26. Lei, Y., N. O'dowd, and G. Webster, Fracture mechanics analysis of a crack in a residual stress field. International Journal of Fracture, 2000. 106(3): p. 195-216.
27. Lei, Y., Validation of the contour integral J function in ABAQUS v6. 11-v6. 14 for cases involving residual stresses.
28. Naderi, M., S. Hoseini, and M. Khonsari, Probabilistic simulation of fatigue damage and life scatter of metallic components. International Journal of Plasticity, 2013. 43: p. 101-115.
29. Pedersen, P., On shrink fit analysis and design. Computational Mechanics, 2006. 37(2): p. 121-130.