1- Schwarz RJ, Taylor C. The anatomy and mechanics of the human hand. 1955;2(2):22-35.
2- Wheatland N, Wang Y, Song H, Neff M, Zordan V, Jörg S. State of the art in hand and finger modeling and animation. in Computer Graphics Forum. 2015;34:735-760.
3- Iberall AR. A neural model of human prehension. 1987.
4- Ansuini C, Santello M, Massaccesi S, Castiello U. Effects of end-goal on hand shaping. Journal of neurophysiology. 2006;95(4):2456-2465.
5- Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on robotics and automation. 1989;5(3):269-279.
6- Bicchi A, Marigo A. Dexterous grippers: Putting nonholonomy to work for fine manipulation. The International Journal of Robotics Research. 2002;21(5-6):427-442.
7- Alba D, Armada M, Ponticelli R. An introductory revision to humanoid robot hands, in Climbing
and walking robots. 2005; pp.701-712.
8- [Online]. Available: https://www.openbionics.com/shop/ada.
9- [Online]. Available: https://inmoov.fr/.
10- Mouri T, Endo T, Kawasaki H. Review of gifu hand and its application. Mechanics based design of structures and machines. 2011;39(2):210-228.
11- Butterfaß J, Grebenstein M, Liu H, Hirzinger G. DLR-Hand II: Next generation of a dextrous robot
hand. in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). 2001;1:109-114.
12- Fischinger D, Weiss A, Vincze M. Learning grasps with topographic features. The International Journal of Robotics Research. 2015;34(9):1167-1194.
13- Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. The International Journal of
Robotics Research. 2015;34(4-5):705-724.
14- Nair V, Hinton GE. 3D object recognition with deep belief nets. Advances in neural information
processing systems. 2009;22.
15- LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The handbook of
brain theory and neural networks. 1995;3361(10).
16- Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA
transactions on Signal and Information Processing. 2014;3.
17- Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural
networks. Communications of the ACM. 2017;60(6):84-90.
18- Bishop CM. Neural networks and their applications. Review of scientific instruments. 1994;65(6):
1803-1832.
19- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. rXiv preprint arXiv. 2014.
20- [Online]. https://www.geeksforgeeks.org/vgg-16-cnn-model/.
21- Gómez G, Hernandez A, Eggenberger Hotz P, Pfeifer R. An adaptive learning mechanism for teaching a robotic hand to grasp. in International symposium on adaptive motion of animals and
machines. 2005.
22- Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. The International journal of robotics research. 2018;37(4-5):421-436.
23- Devaraja RR, Maskeliūnas R, Damaševičius R. Design and evaluation of anthropomorphic robotic
hand for object grasping and shape recognition. Computers. 2020;10(1).
24- McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics. 1943;5(4):115-133.
25- Stergiou C, Siganos D. NEURAL NETWORKS. Surveys and Presentations in Information Systems
Engineering. SURPRISE 96 Journal. 2006:1-25.
26- Yoo HJ. Deep convolution neural networks in computer vision: a review. IEIE Transactions on
Smart Processing and Computing. 2015;4(1):35-43.
27- Liu M, Shi J, Li Z, Li C, Zhu J, Liu S. Towards better analysis of deep convolutional neural networks. IEEE transactions on visualization and computer graphics. 2016;23(1):91-100.
28- Mathworks: Introducing Deep Learning with MATLAB. 2017.
29- [Online]. https://en.wikipedia.org/wiki/Huber_loss.
30- Kootstra G, Popović M, Jørgensen JA, Kuklinski K, Miatliuk K, Kragic D, Krüger N. Enabling grasping of unknown objects through a synergistic use of edge and surface information. The international journal of robotics research, 2012;31(10):1190-1213.
31- Kopicki M, Detry R, Adjigble M, Stolkin R, Leonardis A, Wyatt JL. One-shot learning and generation of dexterous grasps for novel objects. The International Journal of Robotics Research. 2016;35(8):959-976.