مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شناسایی فیچرهای ماشین‌کاری از تصویر قطعات مکانیکی با کمک تکنیک یادگیری عمیق

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تربیت مدرس
چکیده
در تولید قطعات صنعتی، ماشین‌کاری از مهم‌ترین عملیاتی است که در حوزه ساخت قطعات مطرح است. تولید یک قطعه صنعتی در سه مرحله طراحی، طرح‌ریزی فرآیند و ساخت صورت می‌گیرد و در کلیه این مراحل، از کامپیوتر به عنوان یک ابزار قدرتمند، استفاده فراوانی شده است. در طرح‌ریزی فرآیند به‌ کمک کامپیوتر، مرحله شناسایی فیچرهای ماشین‌کاری پیش‌نیاز و مقدمه مراحل بعدی می‌باشد. استخراج اطلاعات و شناسایی فیچرها از اطلاعات طراحی به‌کمک کامپیوتر با توجه به افزایش پیچیدگی قطعات، به صورت دائم بهبود یافته است لیکن تحقیق برای یافتن یک راه حل بهینه پایان ناپذیر است. طی چند دهه گذشته، برای استخراج و شناسایی فیچرهای ماشین‌کاری از اطلاعات فایل طراحی، روش‌های متعددی توسط محققین معرفی و به کارگیری شده است. در کلیه روش‌هایی که تاکنون توسط محققین معرفی و ارایه گردیده است، تعداد و نوع ویژگی‌ها به عنوان متغیرهای مستقل در الگوی شناسایی فیچرهای ماشین‌کاری، توسط طراح الگو و از داده‌های فایل طراحی قطعه استخراج می‌گردد. در این تحقیق ویژگی‌های مورد نیاز برای شناسایی فیچرهای ماشین‌کاری از مقادیر پیکسل‌های تصویر شکل فیچرها و توسط سامانه هوش مصنوعی و بصورت خودکار استخراج می‌گردد. سامانه هوش مصنوعی تولید شده برای شناسایی فیچرهای ماشین‌کاری در این تحقیق قادر است با مشاهده تصویر یک قطعه، کلیه اطلاعات مورد نیاز برای ماشین‌کاری از جمله نام، مختصات محل قرارگیری فیچر نسبت به قطعه و ابعاد مورد نیاز برای ماشین‌کاری قطعه را شناسایی ‌‌نماید و اطلاعات فیچرهای موجود در تصویر ورودی به سامانه را در یک جدول ارایه ‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Machining features recognition from image of mechanical parts with the help of deep learning technic

نویسندگان English

Naser Mohammadi
Mohammad Javad Nategh
PHD condidate
چکیده English

In the production of industrial parts, machining is one of the most important operations in the field of manufacturing parts. The production of an industrial part takes place in three stages: design, process planning and manufacturing, and in all these stages, the computer is used as a powerful tool. In computer-aided process planning, the stage of identifying machining features is a prerequisite and an introduction to the next steps. Extracting information and identifying features from computer-aided design information has been continuously improved due to the increasing complexity of parts, but the research to find an optimal solution is endless. Over the past few decades, several methods have been introduced and applied by researchers to extract and identify machining features from design file information. In all the previous methods, the number and type of features are extracted as independent variables in the machining features identification pattern and from the part design file data. In this research, the charectrestics required to identify the machining features are extracted from the pixel values of the machining feature image by the artificial intelligence system automatically. The artificial intelligence system produced to identify the machining features in this research is able to identify all the information required for machining, including the name, the coordinates of the location of the feature relative to the part, and the dimensions required for the machining, by viewing the image of a part, and the information of the features present in the image the input to the system in a table.

کلیدواژه‌ها English

Machining Feature Recognition
Computer-Aided Process Planning
Artificial Intelligence Depth Learning
1- Zhang Y, Luo X, Zhang B, Zhang S. Semantic approach to the automatic recognition of machining features. The International Journal of Advanced Manufacturing Technology. 2017;89:417-37.
2- Dipper T, Xu X, Klemm P. Defining, recognizing and representing feature interactions in a feature-based data model. Robotics and Computer-Integrated Manufacturing. 2011; 27(1):101-14.
3- Verma AK, Rajotia S. A review of machining feature recognition methodologies. International Journal of Computer Integrated Manufacturing. 2010; 23(4):353-68.
4- Zhu J, Kato M, Tanaka T, Yoshioka H, Saito Y. Graph based automatic process planning system for multi-tasking machine. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2015; 9(3):JAMDSM0034-.
5- Li H, Huang Y, Sun Y, Chen L. Hint-based generic shape feature recognition from three-dimensional B-rep models. Advances in Mechanical Engineering. 2015; 7(4):1687814015582082.
6- Kumar SL. State of the art-intense review on artificial intelligence systems application in process planning and manufacturing. Engineering Applications of Artificial Intelligence. 2017; 65:294-329.
7- Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. 2012.
8- Rohil H, Kaushik P. Adjacency Matrix based Face Recognition Approach. International Journal of Computer Applications. 2014; 98(20).
9- Singla N, Kaur M, Sofat S. Automated latent fingerprint identification system: A review. Forensic science international. 2020; 309:110187.
10- Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Deep structured output learning for unconstrained text recognition. arXiv preprint arXiv:1412.5903. 2014.
11- Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. In2013 IEEE international conference on acoustics, speech and signal processing 2013 May 26 (pp. 6645-6649). Ieee.
12- Corney J, Clark DE. Face-based feature recognition: generalizing special cases. International Journal of Computer Integrated Manufacturing. 1993; 6(1-2):39-50.
13- Alting L, Zhang H. Computer aided process planning: the state-of-the-art survey. The International Journal of Production Research. 1989 Apr 1;27(4):553-85.
14- Babic B, Nesic N, Miljkovic Z. A review of automated feature recognition with rule-based pattern recognition. Computers in industry. 2008 Apr 1;59(4):321-37.
15- Marquez M, White A, Gill R. A hybrid neural network-feature-based manufacturability analysis of mould reinforced plastic parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2001;215(8):1065-79.
16- Tseng YJ, Joshi SB. Recognition of interacting rotational and prismatic machining features from 3-D mill-turn parts. International Journal of Production Research. 1998 Nov 1;36(11):3147-65.
17- Joshi S, Chang TC. Graph-based heuristics for recognition of machined features from a 3D solid model. Computer-aided design. 1988 Mar 1;20(2):58-66.
18- Bhandarkar MP, Nagi R. STEP-based feature extraction from STEP geometry for agile manufacturing. Computers in industry. 2000; 41(1):3-24.
19- Sharma R, Gao JX. Implementation of STEP Application Protocol 224 in an automated manufacturing planning system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2002; 216(9):1277-89.
20- Gao J, Zheng DT, Gindy N, Clark D. Extraction/conversion of geometric dimensions and tolerances for machining features. The International Journal of Advanced Manufacturing Technology. 2005; 26:405-14.
21- Gao J, Zheng DT, Gindy N. Extraction of machining features for CAD/CAM integration. The International Journal of Advanced Manufacturing Technology. 2004; 24:573-81.
22-Foley D, Oreilly R. An Evaluation of Convolutional Neural Network Models for Object Detection in Images on Low-End Devices. AICS. 2018 Dec;2259:1-2.