[1] Y. Peimaei, Lightweight materials ( LWM ) in transportation especially application of aluminum in light weight automobiles ( LWA ) Lightweight materials ( LWM ) in transportation especially application of aluminum in light weight automobiles ( LWA ), (2020).
[2] A. Maria, M. Ramirez, R.R. Vintila, R.A.L. Drew, Morphology of Aluminum Alloy Foams Produced with Dolomite via Partial Sintering of Precursors, m (2019).
[3] A.E. Materials, J. Banhart, T. Universit, Light ‐ Metal Foams — History of Innovation and Technological Challenges Light-metal foams – history of innovation and technological challenges, (2016). https://doi.org/10.1002/adem.201200217.
[4] J. Banhart, Light-metal foams - History of innovation and technological challenges, Adv. Eng. Mater. 15 (2013) 82–111. https://doi.org/10.1002/adem.201200217.
[5] N. Babcsán, G.S. Vinod Kumar, B.S. Murty, J. Banhart, Grain refiners as liquid metal foam stabilisers, Trans. Indian Inst. Met. 60 (2007) 127–132.
[6] T. Filetin, Bending stiffness of aluminium foams, (2012) 93–116.
[7] T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Mater. Sci. Eng. A. 283 (2000) 105–110. https://doi.org/10.1016/S0921-5093(00)00623-7.
[8] Z. Cao, M. Li, Y. Yu, H. Luo, Fabrication of Aluminum Foams with Fine Cell Structure under Increased Pressure, Adv. Eng. Mater. 18 (2016) 1022–1026. https://doi.org/10.1002/adem.201500511.
[9] I. Duarte, J.M.F. Ferreira, Composite and Nanocomposite Metal Foams, 2016. https://doi.org/10.3390/ma9020079.
[10] A. Dudka, F. Garcia-Moreno, N. Wanderka, J. Banhart, Structure and distribution of oxides in aluminium foam, Acta Mater. 56 (2008) 3990–4001. https://doi.org/10.1016/j.actamat.2008.04.040.
[11] K. Heim, G.S. Vinod-Kumar, F. García-Moreno, A. Rack, J. Banhart, Stabilisation of aluminium foams and films by the joint action of dispersed particles and oxide films, Acta Mater. 99 (2015) 313–324. https://doi.org/10.1016/j.actamat.2015.07.064.
[12] H.M. Helwig, F. Garcia-Moreno, J. Banhart, A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys, J. Mater. Sci. 46 (2011) 5227–5236. https://doi.org/10.1007/s10853-011-5460-5.
[13] J. Banhart, Metal foams: Production and stability, Adv. Eng. Mater. 8 (2006) 781–794. https://doi.org/10.1002/adem.200600071.
[14] S. Bhogi, M. Mukherjee, Foam stabilization by magnesium, Mater. Lett. 200 (2017) 118–120. https://doi.org/10.1016/j.matlet.2017.04.100.
[15] S. Sasikumar, K. Georgy, M. Mukherjee, G.S.V. Kumar, Foam stabilization by aluminum powder, Mater. Lett. (2019) 127142. https://doi.org/10.1016/j.matlet.2019.127142.
[16] Manufacturing of Composite Metal Foam By Directly, (2010) 193–196.
[17] B.J. Banhart, Light-Metal Foams- History of Innovation and Technological Challenges **, (2019). https://doi.org/10.1002/adem.201200217.
[18] C.-J. Yu, J. Banhart, Mechanical Properties of Metallic Foams, Int. J. Solids Struct. 49 (2012) 2744–2753.
[19] M.R. Farahani, S. Hossein Elahi, H.R. Rezaei Ashtiani, Effect of Silicon Content on Mechanical Properties and Progressive Collapse Behavior of Closed-cell Aluminum Foams, Trans. Indian Inst. Met. 74 (2021) 3145–3154. https://doi.org/10.1007/s12666-021-02390-8.
[20] M.R. Farahani, H.R. Rezaei Ashtiani, S.H. Elahi, The Effect of Adding Silicon and Zinc Elements on the Mechanical Properties of Closed-Cell Aluminum-Based Foams, Int. J. Met. (2022). https://doi.org/10.1007/s40962-022-00827-4.
[21] S.M.H. Mirbagheri, R. Tafteh, K. Sardashti, Assessment of Tih2 and Caco3 Blowing Agents on Structure and Properties of the Al-7%Si-3%Sic Composite Metal Foam, Adv. Mater. Eng. 30 (2011) 57–72.
[22] M. Styles, P. Compston, S. Kalyanasundaram, The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures, Compos. Struct. 80 (2007) 532–538. https://doi.org/10.1016/j.compstruct.2006.07.002.
[23] L.L. Yan, B. Han, B. Yu, C.Q. Chen, Q.C. Zhang, T.J. Lu, Three-point bending of sandwich beams with aluminum foam-filled corrugated cores, Mater. Des. 60 (2014) 510–519. https://doi.org/10.1016/j.matdes.2014.04.014.
[24] V.C. Shunmugasamy, B. Mansoor, Aluminum foam sandwich with density-graded open-cell core: Compressive and flexural response, Mater. Sci. Eng. A. 731 (2018) 220–230. https://doi.org/10.1016/j.msea.2018.06.048.
[25] S. Shi, Z. Sun, X. Hu, H. Chen, Flexural strength and energy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid, Thin-Walled Struct. 84 (2014) 416–422. https://doi.org/10.1016/j.tws.2014.07.015.
[26] N. Srivastava, S. Bhagavath, S. Karagadde, Effect of in situ Al 3 Zr particles on controlling the pore morphology of Al6061 alloy foams, Mater. Today Commun. (2020) 101853. https://doi.org/10.1016/j.mtcomm.2020.101853.
[27] H. Oveisi, and T. Geramipour, High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: fabrication, microstructure characterization, and mechanical properties, Materials Research Express 6.12 (2020): 1250c2. https://doi.org/10.1088/2053-1591/ab608b.
[28] T.R. Neu, P.H. Kamm, N. von der Eltz, H.W. Seeliger, J. Banhart, F. García-Moreno, Correlation between foam structure and mechanical performance of aluminium foam sandwich panels, Mater. Sci. Eng. A. 800 (2021) 140260. https://doi.org/10.1016/j.msea.2020.140260.
[29] X. Zhou, Y. Li, X. Chen, Development of AlMg35-TiH2 composite foaming agent and fabrication of small pore size aluminium foams, J. Mater. Process. Technol. 283 (2020) 116698. https://doi.org/10.1016/j.jmatprotec.2020.116698.
[30] B. Nayebi, M. Mehrabian, M. Shahedi Asl, M. Shokouhimehr, Nanostructural approach to the thickening behavior and oxidation of calcium-stabilized aluminum foams, Mater. Chem. Phys. 220 (2018) 351–359. https://doi.org/10.1016/j.matchemphys.2018.09.017.
[31] C.H. Seo, M.J. Jeong, I.Y. Jung, B.Y. Hur, Comparative Study on TiH2 and CaCO3 for Fabrication of Mg Alloy Foams, Mater. Sci. Forum. 569 (2008) 273–276. https://doi.org/10.4028/www.scientific.net/msf.569.273.
[32] Z. Li, Z. Zheng, J. Yu, C. Qian, F. Lu, Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures, Compos. Struct. 111 (2014) 285–290. https://doi.org/10.1016/j.compstruct.2014.01.005.
[33] ا.ب. پور, مسعود گلستانی, بررسی اثر استحکام اتصال چسبی در رفتار خمش سه نقطهای پنلهای ساندویچی با هسته فوم کامپوزیتی Al A356/SiCp, فصلنامه علمی - پژوهشی مواد نوین. 7 (1396) 85–94.
[34] K. Kabir, T. Vodenitcharova, M. Hoffman, Response of aluminium foam-cored sandwich panels to bending load, Compos. Part B Eng. 64 (2014) 24–32. https://doi.org/10.1016/j.compositesb.2014.04.003.
[35] M. Guden, S. Yüksel, SiC-particulate aluminum composite foams produced from powder compacts: Foaming and compression behavior, J. Mater. Sci. 41 (2006) 4075–4084. https://doi.org/10.1007/s10853-006-7645-x.
[36] L.J. Gibson, Ashby, MF: Cellular Solids, Struct. Prop. Second Ed. Cambridge. (1997).
[37] M. Golestanipour, H.A. Mashhadi, M.S. Abravi, M.M. Malekjafarian, M.H. Sadeghian, Manufacturing of Al/SiCp composite foams using calcium carbonate as foaming agent, Mater. Sci. Technol. 27 (2011) 923–927.
[38] Y. Luo, S. Yu, W. Li, J. Liu, M. Wei, Compressive behavior of SiCp/AlSi9Mg composite foams, J. Alloys Compd. 460 (2008) 294–298. https://doi.org/10.1016/j.jallcom.2007.06.041.