مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی تجربی اثر هسته فومی آلیاژ آلومینیوم بر رفتار مکانیکی ساندویچ پانل

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی اراک
چکیده
از موارد حائز اهمیت در رفتار مکانیکی ساندویچ پنل­ها نوع و جنس قطعه هسته می­باشد. در مطالعه حاضر رفتار مکانیکی ساندویچ پنل با دو نوع هسته فوم آلیاژ آلومینیوم مورد بررسی قرار گرفت. همچنین به منظور بررسی و مقایسه میزان تاثیر روش به کار رفته جهت تثبیت فوم­های آلومینیومی درخواص خمشی و فشاری هسته ساندویچ ­پنل­ها، فوم آلومینیوم آلیاژی LM13 با تثبیت کننده کلسیم و پودر کاربید سیلیسیم به صورت جداگانه تولید شد. نتایج آزمایش پراش پرتو اشعه ایکس نشان دهنده حضور ترکیبات بین­فلزی Al4Ca در فوم­های آلومینیومی حاوی فلز کلسیم، و ذرات کاربید سیلیسیم برای فوم­های آلومینیومی حاوی پودر سیلیکون­کارباید در دیواره سلولی بود. میزان استحکام تسلیم در ساندویچ پنل هایی با هسته فوم آلومینیوم و تثبیت­کننده فلز­کلسیم از هسته هایی با تثبیت کننده ذرات کاربید سیلیسیم بالاتر بود. همچنین ساندویچ­هایی با هسته فوم آلومینیوم حاوی پودر کاربید سیلیسیم قابلیت جذب انرژی بیشتری از خود نشان دادند. در مقابل فوم هایی با تثبیت کننده پودر کاربید سیلیسیم انرژی بیشتری را تحت آزمایش فشار تک محوری جذب نمودند. همچنین نتایج بررسی ماکروساختار از نحوه تغییر شکل ساندویچ پنل در آزمایش خمش سه نقطه گویای کاهش نیرو در اثر ضعف در اتصال بین پوسته ساندویچ پنل و هسته فوم آلومینیومی بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental evaluation of the effect of aluminum alloy foam core on the mechanical behavior of sandwich panel

نویسندگان English

Abdollah Aghanasiri
Hamidreza Rezaei Ashtiani
Arak university of technology
چکیده English

The type and material of the core piece of sandwich panels are important parameters in the mechanical behavior of these sandwich samples. In this study, the mechanical behavior of sandwich panels with two types of aluminum alloy foam core was investigated. Also, the effect of the method used to stabilize aluminum foam investigates and compares during the bending and compressive tests, for this purpose, the properties of the core of sandwich panels made with LM13 alloy aluminum foam were fabricated with calcium stabilizer and silicon carbide powder separately. The results of the X-ray diffraction test showed the presence of Al4Ca intermetallic compounds in aluminum foams containing calcium metal, and silicon carbide particles for aluminum foams containing silicon carbide powder in the cell wall. The yield strength of sandwich panels with aluminum foam core and calcium metal stabilizer was higher than that of cores with silicon carbide particle stabilizer. Also, sandwich panels with aluminum foam cores containing silicon carbide powder showed more energy absorption. In contrast, foams with silicon carbide powder stabilizer absorbed more energy under the uniaxial pressure test. Also, the results of the macrostructure analysis of how the shape of the sandwich panel changed in the three-point bending test were indicative of a reduction in force due to the weakness in the connection between the sandwich panel shell and the aluminum foam core.

کلیدواژه‌ها English

Sandwich panel
Aluminum alloy foam core
Calcium
Silicon carbide
Bending strength
[1] Y. Peimaei, Lightweight materials ( LWM ) in transportation especially application of aluminum in light weight automobiles ( LWA ) Lightweight materials ( LWM ) in transportation especially application of aluminum in light weight automobiles ( LWA ), (2020).
[2] A. Maria, M. Ramirez, R.R. Vintila, R.A.L. Drew, Morphology of Aluminum Alloy Foams Produced with Dolomite via Partial Sintering of Precursors, m (2019).
[3] A.E. Materials, J. Banhart, T. Universit, Light ‐ Metal Foams — History of Innovation and Technological Challenges Light-metal foams – history of innovation and technological challenges, (2016). https://doi.org/10.1002/adem.201200217.
[4] J. Banhart, Light-metal foams - History of innovation and technological challenges, Adv. Eng. Mater. 15 (2013) 82–111. https://doi.org/10.1002/adem.201200217.
[5] N. Babcsán, G.S. Vinod Kumar, B.S. Murty, J. Banhart, Grain refiners as liquid metal foam stabilisers, Trans. Indian Inst. Met. 60 (2007) 127–132.
[6] T. Filetin, Bending stiffness of aluminium foams, (2012) 93–116.
[7] T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Mater. Sci. Eng. A. 283 (2000) 105–110. https://doi.org/10.1016/S0921-5093(00)00623-7.
[8] Z. Cao, M. Li, Y. Yu, H. Luo, Fabrication of Aluminum Foams with Fine Cell Structure under Increased Pressure, Adv. Eng. Mater. 18 (2016) 1022–1026. https://doi.org/10.1002/adem.201500511.
[9] I. Duarte, J.M.F. Ferreira, Composite and Nanocomposite Metal Foams, 2016. https://doi.org/10.3390/ma9020079.
[10] A. Dudka, F. Garcia-Moreno, N. Wanderka, J. Banhart, Structure and distribution of oxides in aluminium foam, Acta Mater. 56 (2008) 3990–4001. https://doi.org/10.1016/j.actamat.2008.04.040.
[11] K. Heim, G.S. Vinod-Kumar, F. García-Moreno, A. Rack, J. Banhart, Stabilisation of aluminium foams and films by the joint action of dispersed particles and oxide films, Acta Mater. 99 (2015) 313–324. https://doi.org/10.1016/j.actamat.2015.07.064.
[12] H.M. Helwig, F. Garcia-Moreno, J. Banhart, A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys, J. Mater. Sci. 46 (2011) 5227–5236. https://doi.org/10.1007/s10853-011-5460-5.
[13] J. Banhart, Metal foams: Production and stability, Adv. Eng. Mater. 8 (2006) 781–794. https://doi.org/10.1002/adem.200600071.
[14] S. Bhogi, M. Mukherjee, Foam stabilization by magnesium, Mater. Lett. 200 (2017) 118–120. https://doi.org/10.1016/j.matlet.2017.04.100.
[15] S. Sasikumar, K. Georgy, M. Mukherjee, G.S.V. Kumar, Foam stabilization by aluminum powder, Mater. Lett. (2019) 127142. https://doi.org/10.1016/j.matlet.2019.127142.
[16] Manufacturing of Composite Metal Foam By Directly, (2010) 193–196.
[17] B.J. Banhart, Light-Metal Foams- History of Innovation and Technological Challenges **, (2019). https://doi.org/10.1002/adem.201200217.
[18] C.-J. Yu, J. Banhart, Mechanical Properties of Metallic Foams, Int. J. Solids Struct. 49 (2012) 2744–2753.
[19] M.R. Farahani, S. Hossein Elahi, H.R. Rezaei Ashtiani, Effect of Silicon Content on Mechanical Properties and Progressive Collapse Behavior of Closed-cell Aluminum Foams, Trans. Indian Inst. Met. 74 (2021) 3145–3154. https://doi.org/10.1007/s12666-021-02390-8.
[20] M.R. Farahani, H.R. Rezaei Ashtiani, S.H. Elahi, The Effect of Adding Silicon and Zinc Elements on the Mechanical Properties of Closed-Cell Aluminum-Based Foams, Int. J. Met. (2022). https://doi.org/10.1007/s40962-022-00827-4.
[21] S.M.H. Mirbagheri, R. Tafteh, K. Sardashti, Assessment of Tih2 and Caco3 Blowing Agents on Structure and Properties of the Al-7%Si-3%Sic Composite Metal Foam, Adv. Mater. Eng. 30 (2011) 57–72.
[22] M. Styles, P. Compston, S. Kalyanasundaram, The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures, Compos. Struct. 80 (2007) 532–538. https://doi.org/10.1016/j.compstruct.2006.07.002.
[23] L.L. Yan, B. Han, B. Yu, C.Q. Chen, Q.C. Zhang, T.J. Lu, Three-point bending of sandwich beams with aluminum foam-filled corrugated cores, Mater. Des. 60 (2014) 510–519. https://doi.org/10.1016/j.matdes.2014.04.014.
[24] V.C. Shunmugasamy, B. Mansoor, Aluminum foam sandwich with density-graded open-cell core: Compressive and flexural response, Mater. Sci. Eng. A. 731 (2018) 220–230. https://doi.org/10.1016/j.msea.2018.06.048.
[25] S. Shi, Z. Sun, X. Hu, H. Chen, Flexural strength and energy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid, Thin-Walled Struct. 84 (2014) 416–422. https://doi.org/10.1016/j.tws.2014.07.015.
[26] N. Srivastava, S. Bhagavath, S. Karagadde, Effect of in situ Al 3 Zr particles on controlling the pore morphology of Al6061 alloy foams, Mater. Today Commun. (2020) 101853. https://doi.org/10.1016/j.mtcomm.2020.101853.
[27] H. Oveisi, and T. Geramipour, High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: fabrication, microstructure characterization, and mechanical properties, Materials Research Express 6.12 (2020): 1250c2. https://doi.org/10.1088/2053-1591/ab608b.
[28] T.R. Neu, P.H. Kamm, N. von der Eltz, H.W. Seeliger, J. Banhart, F. García-Moreno, Correlation between foam structure and mechanical performance of aluminium foam sandwich panels, Mater. Sci. Eng. A. 800 (2021) 140260. https://doi.org/10.1016/j.msea.2020.140260.
[29] X. Zhou, Y. Li, X. Chen, Development of AlMg35-TiH2 composite foaming agent and fabrication of small pore size aluminium foams, J. Mater. Process. Technol. 283 (2020) 116698. https://doi.org/10.1016/j.jmatprotec.2020.116698.
[30] B. Nayebi, M. Mehrabian, M. Shahedi Asl, M. Shokouhimehr, Nanostructural approach to the thickening behavior and oxidation of calcium-stabilized aluminum foams, Mater. Chem. Phys. 220 (2018) 351–359. https://doi.org/10.1016/j.matchemphys.2018.09.017.
[31] C.H. Seo, M.J. Jeong, I.Y. Jung, B.Y. Hur, Comparative Study on TiH2 and CaCO3 for Fabrication of Mg Alloy Foams, Mater. Sci. Forum. 569 (2008) 273–276. https://doi.org/10.4028/www.scientific.net/msf.569.273.
[32] Z. Li, Z. Zheng, J. Yu, C. Qian, F. Lu, Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures, Compos. Struct. 111 (2014) 285–290. https://doi.org/10.1016/j.compstruct.2014.01.005.
[33] ا.ب. پور, مسعود گلستانی, بررسی اثر استحکام اتصال چسبی در رفتار خمش سه نقطه‌ای پنل‌های ساندویچی با هسته فوم کامپوزیتی Al A356/SiCp, فصلنامه علمی - پژوهشی مواد نوین. 7 (1396) 85–94.
[34] K. Kabir, T. Vodenitcharova, M. Hoffman, Response of aluminium foam-cored sandwich panels to bending load, Compos. Part B Eng. 64 (2014) 24–32. https://doi.org/10.1016/j.compositesb.2014.04.003.
[35] M. Guden, S. Yüksel, SiC-particulate aluminum composite foams produced from powder compacts: Foaming and compression behavior, J. Mater. Sci. 41 (2006) 4075–4084. https://doi.org/10.1007/s10853-006-7645-x.
[36] L.J. Gibson, Ashby, MF: Cellular Solids, Struct. Prop. Second Ed. Cambridge. (1997).
[37] M. Golestanipour, H.A. Mashhadi, M.S. Abravi, M.M. Malekjafarian, M.H. Sadeghian, Manufacturing of Al/SiCp composite foams using calcium carbonate as foaming agent, Mater. Sci. Technol. 27 (2011) 923–927.
[38] Y. Luo, S. Yu, W. Li, J. Liu, M. Wei, Compressive behavior of SiCp/AlSi9Mg composite foams, J. Alloys Compd. 460 (2008) 294–298. https://doi.org/10.1016/j.jallcom.2007.06.041.